80 research outputs found

    Structural Organization of the Presynaptic Density at Identified Synapses in the Locust Central Nervous System

    Get PDF
    In a synaptic active zone, vesicles aggregate around a densely staining structure called the presynaptic density. We focus on its three-dimensional architecture and a major molecular component in the locust. We used electron tomography to study the presynaptic density in synapses made in the brain by identified second-order neuron of the ocelli. Here, vesicles close to the active zone are organized in two rows on either side of the presynaptic density, a level of organization not previously reported in insect central synapses. The row of vesicles that is closest to the density's base includes vesicles docked with the presynaptic membrane and thus presumably ready for release, whereas the outer row of vesicles does not include any that are docked. We show that a locust ortholog of the Drosophila protein Bruchpilot is localized to the presynaptic density, both in the ocellar pathway and compound eye visual neurons. An antibody recognizing the C-terminus of the Bruchpilot ortholog selectively labels filamentous extensions of the presynaptic density that reach out toward vesicles. Previous studies on Bruchpilot have focused on its role in neuromuscular junctions in Drosophila, and our study shows it is also a major functional component of presynaptic densities in the central nervous system of an evolutionarily distant insect. Our study thus reveals Bruchpilot executes similar functions in synapses that can sustain transmission of small graded potentials as well as those relaying large, spike-evoked signals. J. Comp. Neurol. 520:384–400, 2012. © 2011 Wiley Periodicals, Inc

    Rab3a ablation related changes in morphology of secretory vesicles in major endocrine pancreatic cells, pituitary melanotroph cells and adrenal gland chromaffin cells in mice

    No full text
    In this work we have compared the ultrastructural characteristics of major pancreatic endocrine cells, pituitary melanotrophs and adrenal chromaffin cells in the normal mouse strain (wild type, WT) and mice with a known secretory deficit, the Rab3a knockout strain (Rab3a KO). For this purpose, pancreata, pituitary glands and adrenal glands from the Rab3a KO and from the WT mice were analysed, using conventional transmission electron microscopy (TEM). In order to assess the significance of the presence of Rab3a proteins in the relevant cells, we focused primarily on their secretory vesicle morphology and distribution. Our results showed a comparable general morphology in Rab3a KO and WT in all assessed endocrine cell types. In all studied cell types, the distribution of secretory granules along the plasma membrane (number of docked and almost-docked vesicles) was comparable between Rab3a KO and WT mice. Specific differences were found in the diameters of their secretory vesicles, diameters of their electron-dense cores and the presence of autophagic structures in the cells of Rab3A KO mice only. Occasionally, individual electron-dense round vesicles were present inside autophagosome-like structuresthese were possibly secretory vesicles or their remnants. The differences found in the diameters of the secretory vesicles confirm the key role of Rab3a proteins in controlling the balance between secretory vesicle biogenesis and degradation, and suggest that the ablation of this protein probably changes the nature of the reservoir of secretory vesicles available for regulated exocytosis

    Ultrastructure and electrophysiology of thermosensitive sensilla coeloconica in a tropical katydid of the genus Mecopoda (Orthoptera, Tettigoniidae)

    No full text
    In many acoustic insects, mate finding and mate choice are primarily based on acoustic signals. In several species with high-intensity calling songs, such as the studied katydid Mecopoda sp., males exhibit an increase in their thoracic temperature during singing, which is linearly correlated with the amount of energy invested in song production. If this increased body temperature is used by females as an additional cue to assess the male's quality during mate choice, as has been recently hypothesized ("hot-male" hypothesis), thermosensory structures would be required to evaluate this cue. In the present study, therefore, we investigated the ultrastructure and physiology of thermosensitive sensilla coeloconica on the antennal flagella of Mecopoda sp. using a combination of electron microscopy and electrophysiological recording techniques.We could identify three distinct types of sensilla coeloconica based on differences in the number and branching pattern of their dendrites. Physiological recordings revealed the innervation by antagonistically responding thermoreceptors (cold and warm) and bimodal hygro-/thermoreceptors (moist or dry) in various combinations. Our findings indicate that Mecopoda sp. females are capable of detecting a singing male from distances of at least several centimetres solely by assessing thermal cues.publishe

    Larval morphology of the antlion Myrmecaelurus trigrammus (Pallas, 1771) (Neuroptera, Myrmeleontidae), with notes on larval biology

    No full text
    Devetak, Dušan, Klokočovnik, Vesna, Lipovšek, Saška, Bock, Elisabeth, Leitinger, Gerd (2013): Larval morphology of the antlion Myrmecaelurus trigrammus (Pallas, 1771) (Neuroptera, Myrmeleontidae), with notes on larval biology. Zootaxa 3641 (4): 491-500, DOI: http://dx.doi.org/10.11646/zootaxa.3641.4.1

    Investigations to Evaluate Gastric Mucoadhesion of an Organic Product to Ameliorate Gastritis

    No full text
    Gastritis is an inflammatory disease leading to abdominal pain, nausea, and diarrhea. While therapy depends on etiology, adhesive agents protecting the gastric tissue represent a promising treatment option. Caricol®-Gastro is an organic product that significantly decreased gastritic abdominal pain in a recent clinical study. To investigate whether this beneficial effect can be attributed to the formation of a protective layer covering the gastric mucosa after oral application, several methods were used to determine adhesion. These include macro-rheological measurements and gastric mucin interactions, which were correlated to network formation, examined by Cryo-scanning electron microscopy technique, wettability via sessile drop method on human gastric adenocarcinoma cell layers, and ex vivo adhesion studies on gastric porcine tissue with the falling liquid film technique considering physiological conditions and Franz diffusion cells for quantification. The results showed that Caricol®-Gastro formed a stable viscoelastic network with shear thinning properties. It exhibited high wettability and spreadability and adhered to the excised gastric mucosa. We found that oat flour, as the main ingredient of Caricol®-Gastro, supports the gel network regarding viscoelasticity and, to a lesser extent, adhesion in a concentration dependent manner. Moreover, our data highlight that a variety of coordinated methods are required to investigate gastric adhesion

    Malpighian tubule cells in overwintering cave crickets Troglophilus cavicola (Kollar, 1833) and T. neglectus Krauss, 1879 (Rhaphidophoridae, Ensifera)

    Get PDF
    During winter, cave cricket larvae undergo dormancy in subterranean habitatsthis dormancy is termed diapause in second year Troglophilus cavicola larvae because they mature during this time, and termed quiescence in T. neglectus, because they mature after dormancy. Here we used electron microscopy to analyze ultrastructural changes in the epithelial cells in the Malpighian tubules (MTs) of T. cavicola during diapause, in order to compare them with previous findings on T. neglectus. Moreover, the autophagosomes were studied with immunofluorescence microscopy in both species. Although the basic ultrastructure of the cells was similar, specific differences appeared during overwintering. During this natural starvation period, the nucleus, rER, the Golgi apparatus and mitochondria did not show structural changes, and the spherites were exploited. The abundances of autophagic structures in both species increased during overwintering. At the beginning of overwintering, in both species and sexes, the rates of cells with autophagic structures (phagophores, autophagosomes, autolysosomes and residual bodies) were low, while their rates increased gradually towards the end of overwintering. Between sexes, in T. cavicola significant differences were found in the autophagosome abundances in the middle and at the end, and in T. neglectus at the end of overwintering. Females showed higher rates of autophagic cells than males, and these were more abundant in T. cavicola. Thus, autophagic processes in the MT epithelial cells induced by starvation are mostly parallel in diapausing T. cavicola and quiescent T. neglectus, but more intensive in diapausing females
    corecore