242 research outputs found

    The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements

    Get PDF
    This study presents a synthetic model intercomparison to investigate the importance of transport model errors for estimating the sources and sinks of CO2 using satellite measurements. The experiments were designed for testing the potential performance of the proposed CO2 lidar A-SCOPE, but also apply to other space borne missions that monitor total column CO2. The participating transport models IFS, LMDZ, TM3, and TM5 were run in forward and inverse mode using common a priori CO2 fluxes and initial concentrations. Forward simulations of column averaged CO2 (xCO2) mixing ratios vary between the models by s=0.5 ppm over the continents and s=0.27 ppm over the oceans. Despite the fact that the models agree on average on the sub-ppm level, these modest differences nevertheless lead to significant discrepancies in the inverted fluxes of 0.1 PgC/yr per 106 km2 over land and 0.03 PgC/yr per 106 km2 over the ocean. These transport model induced flux uncertainties exceed the target requirement that was formulated for the A-SCOPE mission of 0.02 PgC/yr per 106 km2, and could also limit the overall performance of other CO2 missions such as GOSAT. A variable, but overall encouraging agreement is found in comparison with FTS measurements at Park Falls, Darwin, Spitsbergen, and Bremen, although systematic differences are found exceeding the 0.5 ppm level. Because of this, our estimate of the impact of transport model uncerainty is likely to be conservative. It is concluded that to make use of the remote sensing technique for quantifying the sources and sinks of CO2 not only requires highly accurate satellite instruments, but also puts stringent requirements on the performance of atmospheric transport models. Improving the accuracy of these models should receive high priority, which calls for a closer collaboration between experts in atmospheric dynamics and tracer transpor

    A new Time-of-flight wall for R3BR^3B

    Get PDF

    Characterization of a neutralizing monoclonal antibody to Pasteurella haemolytica leukotoxin.

    Get PDF
    Six hybridoma clones producing monoclonal antibodies (MAbs) reactive with Pasteurella haemolytica A1 leukotoxin were derived from mice immunized with leukotoxin excised from sodium dodecyl sulfate-polyacrylamide gels. Of the six MAbs, only one, Ltx-2, neutralized leukotoxin in a BL-3 cell cytotoxicity assay. MAb Ltx-2 blocked association of A1 leukotoxin to BL-3 cells, as measured by flow cytometric analysis. The epitope recognized by Ltx-2 was localized to the carboxyl half of the native protein, between residues 450 and 939, by Western immunoblot analysis of CNBr fragments. Further analysis with leukotoxin deletion proteins indicated either that the Ltx-2-reactive epitope was localized in the carboxyl portion of the leukotoxin between amino acids 768 and 939 or that this region influences MAb recognition of the epitope. MAb Ltx-2 was tested for neutralizing activity against leukotoxin produced by P. haemolytica serotypes 1 through 12. The MAb neutralized leukotoxin produced by all of the A biotype isolates (serotypes 1, 5, 6, 7, 8, 9, and 12), with the exception of serotype A2, but did not neutralize any T biotype leukotoxin tested (T3, T4, or T10). The results indicate that MAb Ltx-2 neutralizes leukotoxin by interfering with target cell association and that the MAb-specific epitope is either not present or not critical for function in the leukotoxin produced by P. haemolytica serotypes A2, T3, T4, and T10

    CO<sub>2</sub> transport, variability, and budget over the southern California Air Basin using the high-resolution WRF-VPRM Model during the CalNex 2010 campaign

    Get PDF
    To study regional-scale carbon dioxide (CO2) transport, temporal variability, and budget over the Southern California Air Basin (SoCAB) during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign period, a model that couples the Weather Research and Forecasting (WRF) Model with the Vegetation Photosynthesis and Respiration Model (VPRM) has been used. Our numerical simulations use anthropogenic CO2 emissions of the Hestia Project 2010 fossil-fuel CO2 emissions data products along with optimized VPRM parameters at ‘‘FLUXNET’’ sites, for biospheric CO2 fluxes over SoCAB. The simulated meteorological conditions have been validated with ground and aircraft observations, as well as with background CO2 concentrations from the coastal Palos Verdes site. The model captures the temporal pattern of CO2 concentrations at the ground site at the California Institute of Technology in Pasadena, but it overestimates the magnitude in early daytime. Analysis ofCO2 by wind directions reveals the overestimate is due to advection from the south and southwest, where downtown Los Angeles is located. The model also captures the vertical profile of CO2 concentrations along with the flight tracks. The optimized VPRM parameters have significantly improved simulated net ecosystem exchange at each vegetation-class site and thus the regional CO2 budget. The total biospheric contribution ranges approximately from 224% to 220% (daytime) of the total anthropogenic CO2 emissions during the study period

    Regional carbon fluxes and the effect of topography on the variability of atmospheric CO2.

    Get PDF
    Using a mesoscale atmospheric circulation model, it is shown that relatively modest topography height differences of ∼500 m over 200 km near Zotino (60°N, 89°E) in central Siberia may generate horizontal gradients in CO<inf>2</inf> concentration in the order of 30 ppm. In a case study for 15 and 16 July 1996, when Lloyd et al. (2001) conducted a convective boundary layer budget experiment in the area, we show that advection of these gradients disturbs the relation between diurnal concentration changes in the boundary layer and the surface fluxes. This demonstrates that mesoscale atmospheric heterogeneity may have severe impact on the applicability of methods to derive the regional-scale fluxes from CO<inf>2</inf> concentrations measurements, such as the convective boundary layer budget method or inverse modeling. It is shown that similar mesoscale gradients are likely to occur at many long-term observation stations and tall towers. We use the modeled concentration fields to quantify the horizontal and vertical variability of carbon dioxide in the atmosphere. In future observation campaigns, mesoscale processes may be best accounted for by measuring horizontal variability over a few hundred kilometers and by attempting to quantify the representation errors as a function of mesoscale conditions. Copyright 2007 by the American Geophysical Union
    corecore