446 research outputs found
Quasi-1D Bose-Einstein condensates in the dimensional crossover regime
We study theoretically the dimensional crossover from a three-dimensional
elongated condensate to a one-dimensional condensate as the transverse degrees
of freedom get frozen by tight confinement, in the limit of small density
fluctuations, i.e. for a strongly degenerate gas. We compute analytically the
radially integrated density profile at low temperatures using a local density
approximation, and study the behavior of phase fluctuations with the transverse
confinement. Previous studies of phase fluctuations in trapped gases have
either focused on the 3D elongated regimes or on the 1D regime. The present
approach recovers these previous results and is able to interpolate between
them. We show in particular that in this strongly degenerate limit the shape of
the spatial correlation function is insensitive to the transverse regime of
confinement, pointing out to an almost universal behavior of phase fluctuations
in elongated traps
Measuring topology in a laser-coupled honeycomb lattice: From Chern insulators to topological semi-metals
Ultracold fermions trapped in a honeycomb optical lattice constitute a
versatile setup to experimentally realize the Haldane model [Phys. Rev. Lett.
61, 2015 (1988)]. In this system, a non-uniform synthetic magnetic flux can be
engineered through laser-induced methods, explicitly breaking time-reversal
symmetry. This potentially opens a bulk gap in the energy spectrum, which is
associated with a non-trivial topological order, i.e., a non-zero Chern number.
In this work, we consider the possibility of producing and identifying such a
robust Chern insulator in the laser-coupled honeycomb lattice. We explore a
large parameter space spanned by experimentally controllable parameters and
obtain a variety of phase diagrams, clearly identifying the accessible
topologically non-trivial regimes. We discuss the signatures of Chern
insulators in cold-atom systems, considering available detection methods. We
also highlight the existence of topological semi-metals in this system, which
are gapless phases characterized by non-zero winding numbers, not present in
Haldane's original model.Comment: 30 pages, 12 figures, 4 Appendice
Correlated directional atomic clouds via four-heterowave mixing
We investigate the coherence properties of pairs of counter-propagating
atomic clouds, produced in superradiant Rayleigh scattering off atomic
condensates. It is shown that these clouds exhibit long-range spatial coherence
and strong nonclassical density cross-correlations, which make this scheme a
promising candidate for the production of highly directional nonclassically
correlated atomic pulses.Comment: 12 pages, 3 figure
Momentum spectroscopy of 1D phase fluctuations in Bose-Einstein condensates
We measure the axial momentum distribution of Bose-Einstein condensates with
an aspect ratio of 152 using Bragg spectroscopy. We observe the Lorentzian
momentum distribution characteristic of one-dimensional phase fluctuations. The
temperature dependence of the width of this distribution provides a
quantitative test of quasi-condensate theory. In addition, we observe a
condensate length consistent with the absence of density fluctuations, even
when phase fluctuations are large.Comment: 4 pages, 3 figures; submitted to Phys. Rev. Let
(3+1) Massive Dirac Fermions with Ultracold Atoms in Optical Lattices
We propose the experimental realization of (3+1) relativistic Dirac fermions
using ultracold atoms in a rotating optical lattice or, alternatively, in a
synthetic magnetic field. This approach has the advantage to give mass to the
Dirac fermions by coupling the ultracold atoms to a Bragg pulse. A dimensional
crossover from (3+1) to (2+1) Dirac fermions can be obtained by varying the
anisotropy of the lattice. We also discuss under which conditions the
interatomic potentials give rise to relativistically invariant interactions
among the Dirac fermions
Adiabatic loading of a Bose-Einstein condensate in a 3D optical lattice
We experimentally investigate the adiabatic loading of a Bose-Einstein
condensate into an optical lattice potential. The generation of excitations
during the ramp is detected by a corresponding decrease in the visibility of
the interference pattern observed after free expansion of the cloud. We focus
on the superfluid regime, where we show that the limiting time scale is related
to the redistribution of atoms across the lattice by single-particle tunneling
Momentum Spectroscopy of Phase Fluctuations of an Elongated Bose-Einstein Condensate
We have measured the momentum distribution of an elongated BEC (aspect ratio
of 152), for temperatures below the critical temperature. The corresponding
coherence length is significantly smaller than the condensate length in a wide
range of temperature, in quantitative agreement with theoretical predictions.
The Lorentzian shape of the momentum spectrum supports the image of a phase
fluctuating quasicondensate.Comment: Proceedings of the International Conference on Laser Spectroscopy
(ICOLS 03), Cairns, Australia, july 200
The equation of state of ultracold Bose and Fermi gases: a few examples
We describe a powerful method for determining the equation of state of an
ultracold gas from in situ images. The method provides a measurement of the
local pressure of an harmonically trapped gas and we give several applications
to Bose and Fermi gases. We obtain the grand-canonical equation of state of a
spin-balanced Fermi gas with resonant interactions as a function of
temperature. We compare our equation of state with an equation of state
measured by the Tokyo group, that reveals a significant difference in the
high-temperature regime. The normal phase, at low temperature, is well
described by a Landau Fermi liquid model, and we observe a clear thermodynamic
signature of the superfluid transition. In a second part we apply the same
procedure to Bose gases. From a single image of a quasi ideal Bose gas we
determine the equation of state from the classical to the condensed regime.
Finally the method is applied to a Bose gas in a 3D optical lattice in the Mott
insulator regime. Our equation of state directly reveals the Mott insulator
behavior and is suited to investigate finite-temperature effects.Comment: 14 pages, 6 figure
- …