2 research outputs found

    Shelf-Life Evaluation of Ingredient Combinations and Technologies for Use in Pet Food Formulations

    No full text
    Poultry co-product chicken frames (CF) and wooden breast (WB) along with ingredient technology use may bring enhanced value to the pet food industry. Therefore, the current study focused on evaluating CF and WB combinations along with sodium alginate and encapsulated calcium lactate pentahydrate (ALGIN) inclusion within a fresh pet food formulation under simulated shelf-life conditions. Fresh chicken frames (CF) and boneless-skinless wooden breast (WB) were ground and allocated randomly to one of ten treatment combinations with either 0.5 or 1.0% added ALGIN. Ground treatments were placed into a form and fill vacuum package and stored using a reach-in refrigerated case for 21 days. Packages were evaluated for instrumental surface color, lipid oxidation, water activity, and pH on days 1, 3, 7, 14 and 21 of the display. Packages of pet food were lighter, less red, and more yellow (p < 0.05) with increasing percentages of CF regardless of ALGIN inclusion, whereas pH was greater (p < 0.05) and lipid oxidation was less (p < 0.05) with increasing percentage of WB. Water activity increased (p < 0.05) when WB and ALGIN inclusion increased. The current results suggest that the use of ALGIN in a poultry co-product pet food formulation can improve shelf-life characteristics such as surface color and lipid oxidation in fresh pet food

    Combining Maternal and Post-Hatch Dietary 25-Hydroxycholecalciferol Supplementation on Broiler Chicken Growth Performance and Carcass Characteristics

    No full text
    Dietary inclusion of the vitamin D3 (D3) metabolite, 25-hydroxycholecalciferol (25OHD3), was demonstrated to improve broiler growth performance and breast meat yield. To assess the effect of combined maternal (MDIET) and post-hatch (PDIET) dietary 25OHD3 inclusion on broiler growth performance and carcass characteristics, a randomized complete block design experiment with a 2 × 2 factorial treatment structure was conducted. From 25 to 38 weeks of age, broiler breeder hens were provided with 1 of 2 MDIET formulated to contain: 5000 IU D3 (MCTL), or 2240 IU of D3 + 2760 IU of 25OHD3 per kg of feed (M25OHD3). Their chick offspring (n = 448; 224 per MDIET) hatched from eggs collected from 37 to 38 weeks of age were reared in 16 replicate pens with 7 birds per pen and fed 1 of 2 PDIET in 3 phases up to day 40 formulated to contain: 5000 IU of D3 per kg of feed (PCTL), or 2240 IU of D3 + 2760 IU of 25OHD3 per kg of feed (P25OHD3). No additive or synergistic effects of combining 25OHD3 inclusion in MDIET and PDIET were observed. Broilers from 25OHD3-fed hens (M25OHD3) were heavier on day 40 than those from hens fed only D3 (MCTL; 2.911 vs. 2.834 kg; p = 0.040). Tender weight (123 vs. 117 g) and yield (5.63 vs. 5.44%) were greater in the M25OHD3 broilers than the MCTL broilers (p = 0.006). Broilers fed 25OHD3 (P25OHD3) tended to have heavier breasts (637 vs. 615 g; p = 0.050), bone-in wings (215 vs. 210 g; p = 0.070), and boneless thighs (279 vs. 270 g; p = 0.078) compared with those fed only D3 (PCTL). Neither MDIET nor PDIET altered the severity of Wooden Breast and White Striping (p ≥ 0.106). Overall, including 25OHD3 in either the maternal or broiler diet increased broiler meat yield
    corecore