170 research outputs found

    Enhancement of mouse hematopoietic stem/progenitor cell function via transient gene delivery using integration-deficient lentiviral vectors

    Get PDF
    Integration-deficient lentiviruses (IdLVs) deliver genes effectively to tissues but are lost rapidly from dividing cells. This property can be harnessed to express transgenes transiently to manipulate cell biology. Here, we demonstrate the utility of short-term gene expression to improve functional potency of hematopoietic stem and progenitor cells (HSPCs) during transplantation by delivering HOXB4 and Angptl3 using IdLVs to enhance the engraftment of HSPCs. Constitutive overexpression of either of these genes is likely to be undesirable, but the transient nature of IdLVs reduces this risk and those associated with unsolicited gene expression in daughter cells. Transient expression led to increased multilineage hematopoietic engraftment in in vivo competitive repopulation assays without the side effects reported in constitutive overexpression models. Adult stem cell fate has not been programmed previously using IdLVs, but we demonstrate that these transient gene expression tools can produce clinically relevant alterations or be applied to investigate basic biology

    Impact of lifelong exercise training on endothelial ischemia-reperfusion and ischemic preconditioning in humans.

    Get PDF
    Reperfusion is essential for ischemic tissue survival, but causes additional damage to the endothelium (i.e. ischemia-reperfusion [IR] injury). Ischemic preconditioning (IPC) refers to short repetitive episodes of ischemia that can protect against IR. However, IPC efficacy attenuates with older age. Whether physical inactivity contributes to the attenuated efficacy of IPC to protect against IR injury in older humans is unclear. We tested the hypotheses that lifelong exercise training relates to 1) attenuated endothelial IR and 2) maintained IPC efficacy that protects veteran athletes against endothelial IR. In 18 sedentary male individuals (SED, 20 years, 63±7 years) and 20 veteran male athletes (ATH, >5 exercise hours/week for >20 years, 63±6 years), we measured brachial artery endothelial function with flow-mediated dilation (FMD) before and after IR. We induced IR by 20-minutes of ischemia followed by 20-minutes of reperfusion. Randomized over 2 days, participants underwent either 35-minute rest or IPC (3 cycles of 5-minutes cuff inflation to 220 mmHg with 5-minutes of rest) before IR. In SED, FMD decreased after IR (median [interquartile range]): (3.0% [2.0-4.7] to 2.1% [1.5-3.9], P=0.046) and IPC did not prevent this decline (4.1% [2.6-5.2] to 2.8% [2.2-3.6],P=0.012). In ATH, FMD was preserved after IR (3.0% [1.7-5.4] to 3.0% [1.9-4.1], P=0.82) and when IPC preceded IR (3.2% [1.9-4.2] to 2.8% [1.4-4.6],P=0.18). These findings indicate that lifelong exercise training is associated with increased tolerance against endothelial IR. These protective, preconditioning effects of lifelong exercise against endothelial ischemia-reperfusion may contribute to the cardio-protective effects of exercise training

    Anaphylatoxin C3a receptors in asthma

    Get PDF
    The complement system forms the central core of innate immunity but also mediates a variety of inflammatory responses. Anaphylatoxin C3a, which is generated as a byproduct of complement activation, has long been known to activate mast cells, basophils and eosinophils and to cause smooth muscle contraction. However, the role of C3a in the pathogenesis of allergic asthma remains unclear. In this review, we examine the role of C3a in promoting asthma. Following allergen challenge, C3a is generated in the lung of subjects with asthma but not healthy subjects. Furthermore, deficiency in C3a generation or in G protein coupled receptor for C3a abrogates allergen-induced responses in murine models of pulmonary inflammation and airway hyperresponsiveness. In addition, inhibition of complement activation or administration of small molecule inhibitors of C3a receptor after sensitization but before allergen challenge inhibits airway responses. At a cellular level, C3a stimulates robust mast cell degranulation that is greatly enhanced following cell-cell contact with airway smooth muscle (ASM) cells. Therefore, C3a likely plays an important role in asthma primarily by regulating mast cell-ASM cell interaction

    Downsizing a human inflammatory protein to a small molecule with equal potency and functionality

    Get PDF
    A significant challenge in chemistry is to rationally reproduce the functional potency of a protein in a small molecule, which is cheaper to manufacture, non-immunogenic, and also both stable and bioavailable. Synthetic peptides corresponding to small bioactive protein surfaces do not form stable structures in water and do not exhibit the functional potencies of proteins. Here we describe a novel approach to growing small molecules with protein-like potencies from a functionally important amino acid of a protein. A 77-residue human inflammatory protein (complement C3a) important in innate immunity is rationally transformed to equipotent small molecules, using peptide surrogates that incorporate a turn-inducing heterocycle with correctly positioned hydrogen-bond-accepting atoms. Small molecule agonists (molecular weigh

    An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiology of sepsis is due in part to early systemic inflammation. Here we describe molecular and cellular responses, as well as survival, in A<sub>2A </sub>adenosine receptor (AR) agonist treated and untreated animals during experimental sepsis.</p> <p>Methods</p> <p>Sepsis was induced in mice by intraperitoneal inoculation of live bacteria (<it>Escherichia coli </it>or <it>Staphylococcus aureus</it>) or lipopolysaccharide (LPS). Mice inoculated with live bacteria were treated with an A<sub>2A </sub>AR agonist (ATL313) or phosphate buffered saline (PBS), with or without the addition of a dose of ceftriaxone. LPS inoculated mice were treated with ATL313 or PBS. Serum cytokines and chemokines were measured sequentially at 1, 2, 4, 8, and 24 hours after LPS was administered. In survival studies, mice were followed until death or for 7 days.</p> <p>Results</p> <p>There was a significant survival benefit in mice infected with live <it>E. coli </it>(100% vs. 20%, <it>p </it>= 0.013) or <it>S. aureus </it>(60% vs. 20%, <it>p </it>= 0.02) when treated with ATL313 in conjunction with an antibiotic versus antibiotic alone. ATL313 also improved survival from endotoxic shock when compared to PBS treatment (90% vs. 40%, <it>p </it>= 0.005). The serum concentrations of TNF-α, MIP-1α, MCP-1, IFN-γ, and IL-17 were decreased by ATL313 after LPS injection (<it>p </it>< 0.05). Additionally, ATL313 increased the concentration of IL-10 under the same conditions (<it>p </it>< 0.05). Circulating white blood cell concentrations were higher in ATL313 treated animals (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Further studies are warranted to determine the clinical utility of ATL313 as a novel treatment for sepsis.</p

    Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevalence of obesity is increasing to pandemic proportions. However, obese subjects differ in insulin resistance, adipokine production and co-morbidities. Based on fasting plasma analysis, obese subjects were grouped as Low Acylation Stimulating protein (ASP) and Triglyceride (TG) (LAT) vs High ASP and TG (HAT). Subcutaneous (SC) and omental (OM) adipose tissues (n = 21) were analysed by microarray, and biologic pathways in lipid metabolism and inflammation were specifically examined.</p> <p>Methods</p> <p>LAT and HAT groups were matched in age, obesity, insulin, and glucose, and had similar expression of insulin-related genes (InsR, IRS-1). ASP related genes tended to be increased in the HAT group and were correlated (factor B, adipsin, complement C3, p < 0.01 each). Differences between LAT and HAT group were almost exclusively in SC tissue, with little difference in OM tissue. Increased C5L2 (p < 0.01), an ASP receptor, in HAT suggests a compensatory ASP pathway, associated with increased TG storage.</p> <p>Results</p> <p>HAT adipose tissue demonstrated increased lipid related genes for storage (CD36, DGAT1, DGAT2, SCD1, FASN, and LPL), lipolysis (HSL, CES1, perilipin), fatty acid binding proteins (FABP1, FABP3) and adipocyte differentiation markers (CEBPα, CEBPβ, PPARγ). By contrast, oxidation related genes were decreased (AMPK, UCP1, CPT1, FABP7). HAT subjects had increased anti-inflammatory genes TGFB1, TIMP1, TIMP3, and TIMP4 while proinflammatory PIG7 and MMP2 were also significantly increased; all genes, p < 0.025.</p> <p>Conclusion</p> <p>Taken together, the profile of C5L2 receptor, ASP gene expression and metabolic factors in adipose tissue from morbidly obese HAT subjects suggests a compensatory response associated with the increased plasma ASP and TG.</p

    A Recombinant Vaccine Effectively Induces C5a-Specific Neutralizing Antibodies and Prevents Arthritis

    Get PDF
    OBJECTIVES: To develop and validate a recombinant vaccine to attenuate inflammation in arthritis by sustained neutralization of the anaphylatoxin C5a. METHODS: We constructed and expressed fusion protein of C5a and maltose binding protein. Efficacy of specific C5a neutralization was tested using the fusion protein as vaccine in three different arthritis mouse models: collagen induced arthritis (CIA), chronic relapsing CIA and collagen antibody induced arthritis (CAIA). Levels of anti-C5a antibodies and anti-collagen type II were measured by ELISA. C5a neutralization assay was done using a rat basophilic leukemia cell-line transfected with the human C5aR. Complement activity was determined using a hemolytic assay and joint morphology was assessed by histology. RESULTS: Vaccination of mice with MBP-C5a led to significant reduction of arthritis incidence and severity but not anti-collagen antibody synthesis. Histology of the MBP-C5a and control (MBP or PBS) vaccinated mice paws confirmed the vaccination effect. Sera from the vaccinated mice developed C5a-specific neutralizing antibodies, however C5 activation and formation of the membrane attack complex by C5b were not significantly altered. CONCLUSIONS: Exploitation of host immune response to generate sustained C5a neutralizing antibodies without significantly compromising C5/C5b activity is a useful strategy for developing an effective vaccine for antibody mediated and C5a dependent inflammatory diseases. Further developing of such a therapeutic vaccine would be more optimal and cost effective to attenuate inflammation without affecting host immunity

    Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After infecting a mammalian host, the facultative intracellular bacterium, <it>Francisella tularensis</it>, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection.</p> <p>Results</p> <p>Microarray analysis of <it>F. tularensis </it>LVS shifted from 26°C (environmental) to 37°C (mammalian) showed ~11% of this bacterium's genes were differentially-regulated. Importantly, 40% of the protein-coding genes that were induced at 37°C have been previously implicated in virulence or intracellular growth of <it>Francisella </it>in other studies, associating the bacterial response to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37°C encode proteins of unknown function, suggesting novel <it>Francisella </it>virulence traits are regulated by mammalian temperature. To explore this possibility, we generated two mutants of loci induced at 37°C [FTL_1581 and FTL_1664 (<it>deoB</it>)]. The FTL_1581 mutant was attenuated in a chicken embryo infection model, which was likely attributable to a defect in survival within macrophages. FTL_1581 encodes a novel hypothetical protein that we suggest naming <it>t</it>emperature-<it>i</it>nduced, <it>v</it>irulence-associated locus <it>A</it>, <it>tivA</it>. Interestingly, the <it>deoB </it>mutant showed diminished entry into mammalian cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study identifying a <it>Francisella </it>gene that contributes to uptake into both phagocytic and non-phagocytic host cells.</p> <p>Conclusion</p> <p>Our results provide new insight into mechanisms of <it>Francisella </it>virulence regulation and pathogenesis. <it>F. tularensis </it>LVS undergoes considerable gene expression changes in response to mammalian body temperature. This temperature shift is important for the regulation of genes that are critical for the pathogenesis of <it>Francisella</it>. Importantly, the compilation of temperature-regulated genes also defines a rich collection of novel candidate virulence determinants, including <it>tivA </it>(FTL_1581). An analysis of <it>tivA </it>and <it>deoB </it>(FTL_1664) revealed that these genes contribute to intracellular survival and entry into mammalian cells, respectively.</p

    The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes

    Get PDF
    Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389–652 (“SUDcore”) of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 Å resolution, respectively) revealed that SUDcore forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUDcore as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5–6 nucleotides, but more extended G-stretches are found in the 3′-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data
    corecore