199 research outputs found

    Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

    Get PDF
    BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization

    Spatio-Temporal Dynamics of Yeast Mitochondrial Biogenesis: Transcriptional and Post-Transcriptional mRNA Oscillatory Modules

    Get PDF
    Examples of metabolic rhythms have recently emerged from studies of budding yeast. High density microarray analyses have produced a remarkably detailed picture of cycling gene expression that could be clustered according to metabolic functions. We developed a model-based approach for the decomposition of expression to analyze these data and to identify functional modules which, expressed sequentially and periodically, contribute to the complex and intricate mitochondrial architecture. This approach revealed that mitochondrial spatio-temporal modules are expressed during periodic spikes and specific cellular localizations, which cover the entire oscillatory period. For instance, assembly factors (32 genes) and translation regulators (47 genes) are expressed earlier than the components of the amino-acid synthesis pathways (31 genes). In addition, we could correlate the expression modules identified with particular post-transcriptional properties. Thus, mRNAs of modules expressed “early” are mostly translated in the vicinity of mitochondria under the control of the Puf3p mRNA-binding protein. This last spatio-temporal module concerns mostly mRNAs coding for basic elements of mitochondrial construction: assembly and regulatory factors. Prediction that unknown genes from this module code for important elements of mitochondrial biogenesis is supported by experimental evidence. More generally, these observations underscore the importance of post-transcriptional processes in mitochondrial biogenesis, highlighting close connections between nuclear transcription and cytoplasmic site-specific translation

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Minimum follow-up time required for the estimation of statistical cure of cancer patients: verification using data from 42 cancer sites in the SEER database

    Get PDF
    BACKGROUND: The present commonly used five-year survival rates are not adequate to represent the statistical cure. In the present study, we established the minimum number of years required for follow-up to estimate statistical cure rate, by using a lognormal distribution of the survival time of those who died of their cancer. We introduced the term, threshold year, the follow-up time for patients dying from the specific cancer covers most of the survival data, leaving less than 2.25% uncovered. This is close enough to cure from that specific cancer. METHODS: Data from the Surveillance, Epidemiology and End Results (SEER) database were tested if the survival times of cancer patients who died of their disease followed the lognormal distribution using a minimum chi-square method. Patients diagnosed from 1973–1992 in the registries of Connecticut and Detroit were chosen so that a maximum of 27 years was allowed for follow-up to 1999. A total of 49 specific organ sites were tested. The parameters of those lognormal distributions were found for each cancer site. The cancer-specific survival rates at the threshold years were compared with the longest available Kaplan-Meier survival estimates. RESULTS: The characteristics of the cancer-specific survival times of cancer patients who died of their disease from 42 cancer sites out of 49 sites were verified to follow different lognormal distributions. The threshold years validated for statistical cure varied for different cancer sites, from 2.6 years for pancreas cancer to 25.2 years for cancer of salivary gland. At the threshold year, the statistical cure rates estimated for 40 cancer sites were found to match the actuarial long-term survival rates estimated by the Kaplan-Meier method within six percentage points. For two cancer sites: breast and thyroid, the threshold years were so long that the cancer-specific survival rates could yet not be obtained because the SEER data do not provide sufficiently long follow-up. CONCLUSION: The present study suggests a certain threshold year is required to wait before the statistical cure rate can be estimated for each cancer site. For some cancers, such as breast and thyroid, the 5- or 10-year survival rates inadequately reflect statistical cure rates, and highlight the need for long-term follow-up of these patients

    Primitive layered gabbros from fast-spreading lower oceanic crust

    Get PDF
    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks-in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas-provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt

    Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen

    Get PDF
    Acromyrmex leafcutter ants form a mutually beneficial symbiosis with the fungus Leucoagaricus gongylophorus and with Pseudonocardia bacteria. Both are vertically transmitted and actively maintained by the ants. The fungus garden is manured with freshly cut leaves and provides the sole food for the ant larvae, while Pseudonocardia cultures are reared on the ant-cuticle and make antifungal metabolites to help protect the cultivar against disease. If left unchecked, specialized parasitic Escovopsis fungi can overrun the fungus-garden and lead to colony collapse. We report that Escovopsis upregulates the production of two specialized metabolites when it infects the cultivar. These compounds inhibit Pseudonocardia and one, shearinine D, also reduces worker behavioral defences and is ultimately lethal when it accumulates in ant tissues. Our results are consistent with an active evolutionary arms race between Pseudonocardia and Escovopsis, which modifies both bacterial and behavioral defences such that colony collapse is unavoidable once Escovopsis infections escalate

    Differential Gene Expression from Microarray Analysis Distinguishes Woven and Lamellar Bone Formation in the Rat Ulna following Mechanical Loading

    Get PDF
    Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading) or lamellar bone (LBF loading). A set of normal (non-loaded) rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR). The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation

    Expanding the diversity of mycobacteriophages: Insights into genome architecture and evolution

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists. © 2011 Hatfull et al

    Opsonising antibodies to P. falciparum Merozoites associated with immunity to clinical malaria

    Get PDF
    Naturally acquired humoral immunity to the malarial parasite Plasmodium falciparum can protect against disease, although the precise mechanisms remain unclear. Although antibody levels can be measured by ELISA, few studies have investigated functional antibody assays in relation to clinical outcomes. In this study we applied a recently developed functional assay of antibody-mediated opsonisation of merozoites, to plasma samples from a longitudinal cohort study conducted in a malaria endemic region of Papua New Guinea (PNG). Phagocytic activity was quantified by flow cytometry using a standardized and high-throughput protocol, and was subsequently evaluated for association with protection from clinical malaria and high-density parasitemia. Opsonising antibody responses were found to: i) increase with age, ii) be enhanced by concurrent infection, and iii) correlate with protection from clinical episodes and high-density parasitemia. Stronger protective associations were observed in individuals with no detectable parasitemia at baseline. This study presents the first evidence for merozoite phagocytosis as a correlate of acquired immunity and clinical protection against P. falciparum malaria
    corecore