7,142 research outputs found

    Efficient Irregular Wavefront Propagation Algorithms on Hybrid CPU-GPU Machines

    Full text link
    In this paper, we address the problem of efficient execution of a computation pattern, referred to here as the irregular wavefront propagation pattern (IWPP), on hybrid systems with multiple CPUs and GPUs. The IWPP is common in several image processing operations. In the IWPP, data elements in the wavefront propagate waves to their neighboring elements on a grid if a propagation condition is satisfied. Elements receiving the propagated waves become part of the wavefront. This pattern results in irregular data accesses and computations. We develop and evaluate strategies for efficient computation and propagation of wavefronts using a multi-level queue structure. This queue structure improves the utilization of fast memories in a GPU and reduces synchronization overheads. We also develop a tile-based parallelization strategy to support execution on multiple CPUs and GPUs. We evaluate our approaches on a state-of-the-art GPU accelerated machine (equipped with 3 GPUs and 2 multicore CPUs) using the IWPP implementations of two widely used image processing operations: morphological reconstruction and euclidean distance transform. Our results show significant performance improvements on GPUs. The use of multiple CPUs and GPUs cooperatively attains speedups of 50x and 85x with respect to single core CPU executions for morphological reconstruction and euclidean distance transform, respectively.Comment: 37 pages, 16 figure

    Diffuse Atomic and Molecular Gas near IC443

    Full text link
    We present an analysis of results on absorption from Ca II, Ca I, K I, and the molecules CH+, CH, C2, and CN that probes gas interacting with the supernova remnant IC443. The eleven directions sample material across the visible nebula and beyond its eastern edge. Most of the neutral material, including the diatomic molecules, is associated with the ambient cloud detected via H I and CO emission. Analysis of excitation and chemistry yields gas densities that are typical of diffuse molecular gas. The low density gas probed by Ca II extends over a large range in velocities, from -120 to +80 km/s in the most extreme cases. This gas is distributed among several velocity components, unlike the situation for the shocked molecular clumps, whose emission occurs over much the same range but as very broad features. The extent of the high-velocity absorption suggests a shock velocity of 100 km/s for the expanding nebula.Comment: To be published in Ap
    corecore