299 research outputs found

    Asymptotic dynamics of three-dimensional bipolar ultrashort electromagnetic pulses in an array of semiconductor carbon nanotubes

    Get PDF
    We study the propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an array of semiconductor carbon nanotubes at times much longer than the pulse duration, yet still shorter than the relaxation time in the system. The interaction of the electromagnetic field with the electronic subsystem of the medium is described by means of Maxwell’s equations, taking into account the field inhomogeneity along the nanotube axis beyond the approximation of slowly varying amplitudes and phases. A model is proposed for the analysis of the dynamics of an electromagnetic pulse in the form of an effective equation for the vector potential of the field. Our numerical analysis demonstrates the possibility of a satisfactory description of the evolution of the pulse field at large times by means of a three-dimensional generalization of the sine-Gordon and double sine-Gordon equations

    Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review

    Get PDF
    The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA. To enhance the accuracy of CVD/Stroke risk assessment in the RA framework, a proposed approach involves combining genomic-based biomarkers (GBBM) derived from plasma and/or serum samples with innovative non-invasive radiomic-based biomarkers (RBBM), such as measurements of synovial fluid, plaque area, and plaque burden. This review presents two hypotheses: (i) RBBM and GBBM biomarkers exhibit a significant correlation and can precisely detect the severity of CVD/Stroke in RA patients. (ii) Artificial Intelligence (AI)-based preventive, precision, and personalized (aiP3) CVD/Stroke risk AtheroEdge™ model (AtheroPoint™, CA, USA) that utilizes deep learning (DL) to accurately classify the risk of CVD/stroke in RA framework. The authors conducted a comprehensive search using the PRISMA technique, identifying 153 studies that assessed the features/biomarkers of RBBM and GBBM for CVD/Stroke. The study demonstrates how DL models can be integrated into the AtheroEdge™–aiP3 framework to determine the risk of CVD/Stroke in RA patients. The findings of this review suggest that the combination of RBBM with GBBM introduces a new dimension to the assessment of CVD/Stroke risk in the RA framework. Synovial fluid levels that are higher than normal lead to an increase in the plaque burden. Additionally, the review provides recommendations for novel, unbiased, and pruned DL algorithms that can predict CVD/Stroke risk within a RA framework that is preventive, precise, and personalized. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature

    Pulsar kicks from a dark-matter sterile neutrino

    Full text link
    We show that a sterile neutrino with mass in the 1-20 keV range and a small mixing with the electron neutrino can simultaneously explain the origin of the pulsar motions and the dark matter in the universe. An asymmetric neutrino emission from a hot nascent neutron star can be the explanation of the observed pulsar velocities. In addition to the pulsar kick mechanism based on resonant neutrino transitions, we point out a new possibility: an asymmetric off-resonant emission of sterile neutrinos. The two cases correspond to different values of the masses and mixing angles. In both cases we identify the ranges of parameters consistent with the pulsar kick, as well as cosmological constraints.Comment: 5 pages, 2 figures; final version; discussion and references adde

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of β\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat)  0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of β\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed β\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil

    NESTOR: A neutrino particle astrophysics underwater laboratory for the Mediterranean

    Get PDF
    Abstract An underwater neutrino astrophysics laboratory, to be located in the international waters off the Southwest of Greece, near the town of Pylos is now under construction. In the last two years a group of physicists from Greece and Russia have carried out two demonstration experiments in 4km deep water, counting muons and verifying the adequacy of the deep sea site. Plans are presented for a 100, 000 m 2 high energy neutrino detector composed of a hexagon of hexagonal towers, with 1176 optical detector units. A progress report is given and the physics potential of a siggle tower with 168 phototubes (currently under construction) is described

    A review of photovoltaic module technologies for increased performance in tropical climate

    Get PDF
    The global adoption and use of photovoltaic modules (PVMs) as the main source of energy is the key to realising the UN Millennium Development Goals on Green Energy. The technology – projected to contribute about 20% of world energy supply by 2050, over 60% by 2100 and leading to 50% reduction in global CO2 emissions – is threatened by its poor performance in tropical climate. Such performance discourages its regional acceptance. The magnitude of crucial module performance influencing factors (cell temperature, wind speed and relative humidity) reach critical values of 90 °C, 0.2 m/s and 85%, respectively in tropical climates which negatively impact module performance indices which include power output (PO), power conversion efficiency (PCE) and energy payback time (EPBT). This investigation reviews PVM technologies which include cell, contact and interconnection technologies. It identifies critical technology route(s) with potential to increase operational reliability of PVMs in the tropics when adopted. The cell performance is measured by PO, PCE and EPBT while contacts and interconnections performance is measured by the degree of recombination, shading losses and also the rate of thermo-mechanical degradation. It is found that the mono-crystalline cell has the best PCE of 25% while the Cadmium Telluride (CdTe) cell has the lowest EPBT of 8-months. Results show that the poly-crystalline cell has the largest market share amounting to 54%. The CdTe cell exhibits 0% drop in PCE at high-temperatures and low irradiance operations – demonstrating least affected PO by the conditions. Further results establish that back contacts and back-to-back interconnection technologies produce the least recombination losses and demonstrate absence of shading in addition to possessing longest interconnection fatigue life. Based on these findings, the authors propose a PVM comprising CdTe cell, back contacts and back-to-back interconnection technologies as the technology with latent capacity to produce improved performance in tropical climates

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    corecore