1,314 research outputs found

    Arrangement of Subunits in Microtubules with 14 Profilaments

    Get PDF
    The structure of 14-protofilament microtubules reassembled from dogfish shark brain tubulin was analyzed by high resolution electron microscopy and optical diffraction. The simultaneous imaging of the protofilaments from near and far sides of these tubules produces a moiré pattern with a period of approximately 96 nm. Optical diffraction patterns show that the 5-nm spots that arise from the protofilaments for the two sides of the tubule are not coincident but lie off the equator by a distance of 1/192 nm-1. These data provide evidence that in reassembled microtubules containing 14 protofilaments, the protofilaments are tilted 1.5 degrees with respect to the long axis of the tubule, giving a left-handed superhelix with a pitch of 2.7 micron. The hypothesis is that the tilt of the protofilaments occurs to accommodate the 14th protofilament. It is determined that when the 14th protofilament is incorporated, the 3-start helix is maintained, but the pitch angle changes from 10.5 degrees to 11.2 degrees, the angle between protofilaments measured from the center of the microtubule changes by 2 degrees, and the dimer lattice is discontinuous. These observations show that the tubulin molecule is sufficiently flexible to accomodate slight distortions at the lateral bonding sites and that the lateral bonding regions of the alpha and beta monomers are sufficiently similar to allow either alpha-alpha and beta-beta subunit pairing or alpha-beta subunit pairing

    Fast Transport of Neurofilament Protein along Microtubules in Squid Axoplasm

    Get PDF
    Using squid axoplasm as a model system, we have visualized the fast transport of non-filamentous neurofilament protein particles along axonal microtubules. This transport occurs at speeds of 0.5-1.0 microm/second and the majority of neurofilament particles stain with kinesin antibody. These observations demonstrate, for the first time, that fast (0.5-1.0 microm/second) transport of neurofilament proteins occurs along microtubules. In addition, our studies suggest that neurofilament protein can be transported as non-membrane bound, nonfilamentous subunits along axons, and that the transport is kinesin-dependent. Microtubule-based fast transport might therefore provide a mechanism for the distribution and turnover of neurofilament, and perhaps other cytoskeletal proteins, throughout neurons

    Fast Transport of Neurofilament Protein along Microtubules in Squid Axoplasm

    Get PDF
    Using squid axoplasm as a model system, we have visualized the fast transport of non-filamentous neurofilament protein particles along axonal microtubules. This transport occurs at speeds of 0.5-1.0 microm/second and the majority of neurofilament particles stain with kinesin antibody. These observations demonstrate, for the first time, that fast (0.5-1.0 microm/second) transport of neurofilament proteins occurs along microtubules. In addition, our studies suggest that neurofilament protein can be transported as non-membrane bound, nonfilamentous subunits along axons, and that the transport is kinesin-dependent. Microtubule-based fast transport might therefore provide a mechanism for the distribution and turnover of neurofilament, and perhaps other cytoskeletal proteins, throughout neurons

    Movement of Axoplasmic Organelles on Actin Filaments from Skeletal Muscle

    Get PDF
    It was recently shown that, in addition to the well-established microtubule-dependent mechanism, fast transport of organelles in squid giant axons also occurs in the presence of actin filaments [Kuznetsov et al., 1992, Nature 356:722-725]. The objectives of this study were to obtain direct evidence of axoplasmic organelle movement on actin filaments and to demonstrate that these organelles are able to move on skeletal muscle actin filaments. Organelles and actin filaments were visualized by video-enhanced contrast differential interference contrast (AVEC-DIC) microscopy and by video intensified fluorescence microscopy. Actin filaments, prepared by polymerization of monomeric actin purified from rabbit skeletal muscle, were stabilized with rhodamine-phalloidin and adsorbed to cover slips. When axoplasm was extruded on these cover slips in the buffer containing cytochalasin B that prevents the formation of endogenous axonal actin filaments, organelles were observed to move at the fast transport rate. Also, axoplasmic organelles were observed to move on bundles of actin filaments that were of sufficient thickness to be detected directly by AVEC-DIC microscopy. The range of average velocities of movement on the muscle actin filaments was not statistically different from that on axonal filaments. The level of motile activity (number of organelles moving/min/field) on the exogenous filaments was less than on endogenous filaments probably due to the entanglement of filaments on the cover slip surface. We also found that calmodulin (CaM) increased the level of motile activity of organelles on actin filaments. In addition, CaM stimulated the movement of elongated membranous organelles that appeared to be tubular elements of smooth endoplasmic reticulum or extensions of prelysosomes. These studies provide the first direct evidence that organelles from higher animal cells such as neurons move on biochemically defined actin filaments

    Transport of ER Vesicles on Actin Filaments in Neurons by Myosin V

    Get PDF
    Axoplasmic organelles in the giant axon of the squid have been shown to move on both actin filaments and microtubules and to switch between actin filaments and microtubules during fast axonal transport. The objectives of this investigation were to identify the specific classes of axoplasmic organelles that move on actin filaments and the myosin motors involved. We developed a procedure to isolate endoplasmic reticulum (ER) from extruded axoplasm and to reconstitute its movement in vitro. The isolated ER vesicles moved on exogenous actin filaments adsorbed to coverslips in an ATP-dependent manner without the addition of soluble factors. Therefore myosin was tightly bound and not extracted during isolation. These vesicles were identified as smooth ER by use of an antibody to an ER-resident protein, ERcalcistorin/protein disulfide isomerase (EcaSt/PDI). Furthermore, an antibody to squid myosin V was used in immunogold EM studies to show that myosin V localized to these vesicles. The antibody was generated to a squid brain myosin (p196) that was classified as myosin V based on comparisons of amino acid sequences of tryptic peptides of this myosin with those of other known members of the myosin V family. Dual labeling with the squid myosin V antibody and a kinesin heavy chain antibody showed that the two motors colocalized on the same vesicles. Finally, antibody inhibition experiments were performed with two myosin V-specific antibodies to show that myosin V motor activity is required for transport of vesicles on actin filaments in axoplasm. One antibody was made to a peptide in the globular tail domain and the other to the globular head fragment of myosin V. Both antibodies inhibited vesicle transport on actin filaments by greater than 90% compared to controls. These studies provide the first direct evidence that ER vesicles are transported on actin filaments by myosin V. These data confirm the role of actin filaments in fast axonal transport and provide support for the dual filament model of vesicle transport

    An Optical Fiber Photoplethysmographic System for Central Nervous System Tissue

    Get PDF

    Characteristics of the Motor Responsible for the Gliding of Native Microtubules from Squid Axoplasm

    Get PDF
    Nucleotide-dependent movement of native microtubules (nMTs) in squid axoplasm has biochemical and biophysical characteristics of kinesin-driven motility. However, the high vanadate and N-ethylmaleimide sensitivity and the velocity demonstrate that the properties of the native motile system differ considerably from those of purified kinesin preparations

    The Interaction between Cytoplasmic Dynein and Dynactin Is Required for Fast Axonal Transport

    Get PDF
    Fast axonal transport is characterized by the bidirectional, microtubule-based movement of membranous organelles. Cytoplasmic dynein is necessary but not sufficient for retrograde transport directed from the synapse to the cell body. Dynactin is a heteromultimeric protein complex, enriched in neurons, that binds to both microtubules and cytoplasmic dynein. To determine whether dynactin is required for retrograde axonal transport, we examined the effects of anti-dynactin antibodies on organelle transport in extruded axoplasm. Treatment of axoplasm with antibodies to the p150(Glued) subunit of dynactin resulted in a significant decrease in the velocity of microtubule-based organelle transport, with many organelles bound along microtubules. We examined the molecular mechanism of the observed inhibition of motility, and we demonstrated that antibodies to p150(Glued) disrupted the binding of cytoplasmic dynein to dynactin and also inhibited the association of cytoplasmic dynein with organelles. In contrast, the anti-p150(Glued) antibodies had no effect on the binding of dynactin to microtubules nor on cytoplasmic dynein-driven microtubule gliding. These results indicate that the interaction between cytoplasmic dynein and the dynactin complex is required for the axonal transport of membrane-bound vesicles and support the hypothesis that dynactin may function as a link between the organelle, the microtubule, and cytoplasmic dynein during vesicle transport
    corecore