229 research outputs found
Reconfiguration of dominant coupling modes in mild traumatic brain injury mediated by δ-band activity: a resting state MEG study
During the last few years, rich-club (RC) organization has been studied as a possible brain-connectivity organization model for large-scale brain networks. At the same time, empirical and simulated data of neurophysiological models have demonstrated the significant role of intra-frequency and inter-frequency coupling among distinct brain areas. The current study investigates further the importance of these couplings using recordings of resting-state magnetoencephalographic activity obtained from 30 mild traumatic brain injury (mTBI) subjects and 50 healthy controls. Intra-frequency and inter-frequency coupling modes are incorporated in a single graph to detect group differences within individual rich-club subnetworks (type I networks) and networks connecting RC nodes with the rest of the nodes (type II networks). Our results show a higher probability of inter-frequency coupling for (δ–γ1), (δ–γ2), (θ–β), (θ–γ2), (α–γ2), (γ1–γ2) and intra-frequency coupling for (γ1–γ1) and (δ–δ) for both type I and type II networks in the mTBI group. Additionally, mTBI and control subjects can be correctly classified with high accuracy (98.6%), whereas a general linear regression model can effectively predict the subject group using the ratio of type I and type II coupling in the (δ, θ), (δ, β), (δ, γ1), and (δ, γ2) frequency pairs. These findings support the presence of an RC organization simultaneously with dominant frequency interactions within a single functional graph. Our results demonstrate a hyperactivation of intrinsic RC networks in mTBI subjects compared to controls, which can be seen as a plausible compensatory mechanism for alternative frequency-dependent routes of information flow in mTBI subjects
Modulational stability of periodic solutions of the Kuramoto-Sivaskinsky equation
We study the long-wave, modulational, stability of steady periodic solutions of the Kuramoto-Sivashinsky equation. The analysis is fully nonlinear at first, and can in principle be carried out to all orders in the small parameter, which is the ratio of the spatial period to a characteristic length of the envelope perturbations. In the linearized regime, we recover a high-order version of the results of Frisch, She, and Thual, which shows that the periodic waves are much more stable than previously expected
Improving the detection of mtbi via complexity analysis in resting - state magnetoencephalography
Diagnosis of mild Traumatic Brain Injury (mTBI) is difficult due to the variability of obvious brain lesions using imaging scans. A promising tool for exploring potential biomarkers for mTBI is magnetoencephalography which has the advantage of high spatial and temporal resolution. By adopting proper analytic tools from the field of symbolic dynamics like Lempel-Ziv complexity, we can objectively characterize neural network alterations compared to healthy control by enumerating the different patterns of a symbolic sequence. This procedure oversimplifies the rich information of brain activity captured via MEG. For that reason, we adopted neural-gas algorithm which can transform a time series into more than two symbols by learning brain dynamics with a small reconstructed error. The proposed analysis was applied to recordings of 30 mTBI patients and 50 normal controls in δ frequency band. Our results demonstrated that mTBI patients could be separated from normal controls with more than 97% classification accuracy based on high complexity regions corresponding to right frontal areas. In addition, a reverse relation between complexity and transition rate was demonstrated for both groups. These findings indicate that symbolic complexity could have a significant predictive value in the development of reliable biomarkers to help with the early detection of mTBI
Enhanced statistical stability in coherent interferometric imaging
http://iopscience.iop.org/0266-5611/International audienc
On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector
This paper presents the effects of hygrothermal aging on the durability of a pultruded flat sheet, immersed in distilled water at 25oC, 40oC, 60oC or 80oC for a period of 224 days. Elevated temperatures noticeably increase the moisture diffusion coefficient and moisture uptake behaviour. Measured changes in the tensile and in-plane shear mechanical properties were examined after 28, 56, 112 or 224 days. Tensile properties remained practically unaffected by aging whereas matrix dominated shear properties revealed an initial drop which was recovered to a substantial degree after further hygrothermal aging. Visco-elastic property changes due to the superimposing mechanisms of plasticization, additional cross-linking etc. were recorded. Scanning Electron Microscopy micrographs indicate that the fibre/matrix interface remained practically intact, even after the most aggressive hot/wet aging. X-Ray Energy Dispersive Spectroscopy analysis showed no chemical degradation incidents on the fibre reinforcement surfaces and infrared spectroscopy revealed superficial chemical alteration in the aging matrix. Optical microscopy revealed matrix cracking in samples aged at 80oC for 112 days. Lastly, Computed Tomography scans of un-aged material showed internal imperfections that undoubtedly enhanced moisture transport. After aging at 60oC for 112 days, Computed Tomography detected preferentially situated water pockets
Kinetic viscoelasticity modeling applied to degradation during carbon–carbon composite processing
Kinetic viscoelasticity modeling has been successfully utilized to describe phenomena during cure of thermoset based carbon fiber reinforced matrices. The basic difference from classic viscoelasticity is that the fundamental material descriptors change as a result of reaction kinetics. Accordingly, we can apply the same concept for different kinetic phenomena with simultaneous curing and degradation. The application of this concept can easily be utilized in processing and manufacturing of carbon–carbon composites, where phenolic resin matrices are cured degraded and reinfused in a carbon fiber bed. This work provides a major step towards understanding complex viscoelastic phenomena that go beyond simple thermomechanical descriptors.United States. Air Force Office of Scientific ResearchNational Science Foundation (U.S.) (Joint U.S.-Greece Program
Associations Between \u3cem\u3eSLC16A11\u3c/em\u3e Variants and Diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)
Five sequence variants in SLC16A11 (rs117767867, rs13342692, rs13342232, rs75418188, and rs75493593), which occur in two non-reference haplotypes, were recently shown to be associated with diabetes in Mexicans from the SIGMA consortium. We aimed to determine whether these previous findings would replicate in the HCHS/SOL Mexican origin group and whether genotypic effects were similar in other HCHS/SOL groups. We analyzed these five variants in 2492 diabetes cases and 5236 controls from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), which includes U.S. participants from six diverse background groups (Mainland groups: Mexican, Central American, and South American; and Caribbean groups: Puerto Rican, Cuban, and Dominican). We estimated the SNP-diabetes association in the six groups and in the combined sample. We found that the risk alleles occur in two non-reference haplotypes in HCHS/SOL, as in the SIGMA Mexicans. The haplotype frequencies were very similar between SIGMA Mexicans and the HCHS/SOL Mainland groups, but different in the Caribbean groups. The SLC16A11 sequence variants were significantly associated with risk for diabetes in the Mexican origin group (P = 0.025), replicating the SIGMA findings. However, these variants were not significantly associated with diabetes in a combined analysis of all groups, although the power to detect such effects was 85% (assuming homogeneity of effects among the groups). Additional analyses performed separately in each of the five non-Mexican origin groups were not significant. We also analyzed (1) exclusion of young controls and, (2) SNP by BMI interactions, but neither was significant in the HCHS/SOL data. The previously reported effects of SLC16A11 variants on diabetes in Mexican samples was replicated in a large Mexican-American sample, but these effects were not significant in five non-Mexican Hispanic/Latino groups sampled from U.S. populations. Lack of replication in the HCHS/SOL non-Mexicans, and in the entire HCHS/SOL sample combined may represent underlying genetic heterogeneity. These results indicate a need for future genetic research to consider heterogeneity of the Hispanic/Latino population in the assessment of disease risk, but add to the evidence suggesting SLC16A11 as a potential therapeutic target for type 2 diabetes
- …