9 research outputs found

    Selective inhibition of phosphodiesterase 7 enzymes reduces motivation for nicotine use through modulation of mesolimbic dopaminergic transmission

    Get PDF
    Approximately 5 million people die from diseases related to nicotine addiction and tobacco use each year. The nicotine-induced increase of corticomesolimbic dopaminergic (DAergic) transmission and hypodopaminergic conditions occurring during abstinence are important for maintaining drug-use habits. We examined the notion of reequilibrating DAergic transmission by inhibiting phosphodiesterase 7 (PDE7), an intracellular enzyme highly expressed in the corticomesolimbic circuitry and responsible for the degradation of cyclic adenosine monophosphate (cAMP), the main second messenger modulated by DA receptor activation. Using selective PDE7 inhibitors, we demonstrated in male rats that systemic PDE7 enzyme inhibition reduced nicotine self-administration and prevented reinstatement to nicotine seeking evoked by cues or by the pharmacological stressor yohimbine. The effect was also observed by direct application of the PDE7 inhibitors into the nucleus accumbens (NAc) shell but not into the core. Inhibition of PDE7 resulted in increased DA- and cAMP-regulated neuronal phosphoprotein and cAMP response element-binding protein and their phosphorylated forms in the NAc. It also enhanced the DA D1 receptor agonism-mediated effects, indicating potentiation of protein kinase A–dependent transmission downstream of D1 receptor activation. In electrophysiological recordings from DA neurons in the lateral posterior ventral tegmental area, the PDE7 inhibitors attenuated the spontaneous activity of DA neurons. This effect was exerted through the potentiation of D1 receptor signaling and the subsequent facilitation of c-aminobutyric acid transmission. The PDE7 inhibitors did not elicit conditioned place preference and did not induce intravenous self-administration, indicating lack of reinforcing properties. Thus, PDE7 inhibitors have the potential to treat nicotine abuse

    An Inducible and Reversible Mouse Genetic Rescue System

    Get PDF
    Inducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system, which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline. This method combines two genetically modified mouse lines: a) a KO line with a tetracycline-dependent transactivator replacing the endogenous target gene, and b) a line with a tetracycline-inducible cDNA of the target gene inserted into a tightly regulated (TIGRE) genomic locus, which provides for low basal expression and high inducibility. Such a locus occurs infrequently in the genome and we have developed a method to easily introduce genes into the TIGRE site of mouse embryonic stem (ES) cells by recombinase-mediated insertion. Both KO and TIGRE lines have been engineered for high-throughput, large-scale and cost-effective production of iKO mice. As a proof of concept, we have created iKO mice in the apolipoprotein E (ApoE) gene, which allows for sensitive and quantitative phenotypic analyses. The results demonstrated reversible switching of ApoE transcription, plasma cholesterol levels, and atherosclerosis progression and regression. The iKO system shows stringent regulation and is a versatile genetic system that can easily incorporate other techniques and adapt to a wide range of applications

    Neuromedin U Receptor 2-Deficient Mice Display Differential Responses in Sensory Perception, Stress, and Feeding

    No full text
    Neuromedin U (NMU) is a highly conserved neuropeptide with a variety of physiological functions mediated by two receptors, peripheral NMUR1 and central nervous system NMUR2. Here we report the generation and phenotypic characterization of mice deficient in the central nervous system receptor NMUR2. We show that behavioral effects, such as suppression of food intake, enhanced pain response, and excessive grooming induced by intracerebroventricular NMU administration were abolished in the NMUR2 knockout (KO) mice, establishing a causal role for NMUR2 in mediating NMU's central effects on these behaviors. In contrast to the NMU peptide-deficient mice, NMUR2 KO mice appeared normal with regard to stress, anxiety, body weight regulation, and food consumption. However, the NMUR2 KO mice showed reduced pain sensitivity in both the hot plate and formalin tests. Furthermore, facilitated excitatory synaptic transmission in spinal dorsal horn neurons, a mechanism by which NMU stimulates pain, did not occur in NMUR2 KO mice. These results provide significant insights into a functional dissection of the differential contribution of peripherally or centrally acting NMU system. They suggest that NMUR2 plays a more significant role in central pain processing than other brain functions including stress/anxiety and regulation of feeding

    PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission

    No full text
    PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction
    corecore