176 research outputs found

    Fate of conjugated natural and synthetic steroid estrogens in crude sewage and activated sludge batch studies

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Environmental Science & Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es801952h.Steroids are excreted from the human body in the conjugated form but are present in sewage influent and effluent as the free steroid, the major source of estrogenic activity observed in water courses. The fate of sulfate and glucuronide conjugated steroid estrogens was investigated in batch studies using activated sludge grown on synthetic sewage in a laboratory-scale Husmann simulation and crude sewage from the field. A clear distinction between the fate of sulfate and glucuronide conjugates was observed in both matrices, with sulfated conjugates proving more recalcitrant and glucuronide deconjugation preferential in crude sewage. For each conjugate, the free steroid was observed in the biotic samples. The degree of free steroid formation was dependent on the conjugate moiety, favoring the glucuronide. Subsequent degradation of the free steroid (and sorption to the activated sludge solid phase) was evaluated. Deconjugation followed the first order reaction rate with rate constants for 17α-ethinylestradiol 3-glucuronide, estriol 16α-glucuronide, and estrone 3-glucuronide determined as 0.32, 0.24, and 0.35 h respectively. The activated sludge solid retention time over the range of 3−9 days had 74 to 94% of sulfate conjugates remaining after 8 h. In contrast, a correlation between increasing temperature and decreasing 17α-ethinylestradiol 3-glucuronide concentrations in the activated sludge observed no conjugate present in the AS following 8 h at 22 °C Based on these batch studies and literature excretion profiles, a hypothesis is presented on which steroids and what form (glucuronide, sulfate, or free) will likely enter the sewage treatment plant.EPSR

    How old is the Tasmanian cultural landscape? a test of landscape openness using quantitative land-cover reconstructions

    Get PDF
    Aim: To test competing hypotheses about the timing and extent of Holocene landscape opening using pollen-based quantitative land-cover estimates. Location: Dove Lake, Tasmanian Wilderness World Heritage Area, Australia. Methods: Fossil pollen data were incorporated into pollen dispersal models and corrected for differences in pollen productivity among key plant taxa. Mechanistic models (REVEALS-Regional Estimates of VEgetation Abundance from Large Sites) employing different models for pollen dispersal (Gaussian plume and Lagrangian stochastic models) were evaluated and applied in the Southern Hemisphere for the first time. Results: Validation of the REVEALS model with vegetation cover data suggests an overall better performance of the Lagrangian stochastic model. Regional land-cover estimates for forest and non-forest plant taxa show persistent landscape openness throughout the Holocene (average landscape openness similar to 50%). Gymnoschoenus sphaerocephalus, an indicator of moorland vegetation, shows higher values during the early Holocene (11.7-9 ka) and declines slightly through the mid-Holocene (9-4.5 ka) during a phase of partial landscape afforestation. Rain forest cover reduced (from similar to 40% to similar to 20%) during the period between 4.2-3.5 ka. Main conclusions: Pollen percentages severely under-represent landscape openness in western Tasmania and this bias has fostered an over-estimation of Holocene forest cover from pollen data. Treeless vegetation dominated Holocene landscapes of the Dove Lake area, allowing us to reject models of landscape evolution that invoke late-Holocene replacement of a rain forest-dominated landscape by moorland. Instead, we confirm a model of Late Pleistocene inheritance of open vegetation. Rapid forest decline occurred after c.4 ka, likely in response to regional moisture decline.Australian Research Council; AINSE AWARD [ALNGRA16024]; AINSE PGRA scholarship [12039]info:eu-repo/semantics/publishedVersio

    Simultaneous determination of natural and synthetic steroid estrogens and their conjugates in aqueous matrices by liquid chromatography / mass spectrometry

    Get PDF
    An analytical method for the simultaneous determination of nine free and conjugated steroid estrogens was developed with application to environmental aqueous matrices. Solid phase extraction (SPE) was employed for isolation and concentration, with detection by liquid chromatography/mass spectrometry (LC/MS) using electrospray ionisation (ESI) in the negative mode. Method recoveries for various aqueous matrices (wastewater, lake and drinking water) were determined, recoveries proving to be sample dependent. When spiked at 50 ng/l concentrations in sewage influent, recoveries ranged from 62-89 % with relative standard deviations (RSD) < 8.1 %. In comparison, drinking water spiked at the same concentrations had recoveries between 82-100 % with an RSD < 5%. Ion suppression is a known phenomenon when using ESI; hence its impact on method recovery was elucidated for raw sewage. Both ion suppression from matrix interferences and the extraction procedure has bearing on the overall method recovery. Analysis of municipal raw sewage identified several of the analytes of interest at ng/l concentrations, estriol (E3) being the most abundant. Only one conjugate, estrone 3-sulphate (E1-3S) was observe

    Biogeochemical responses to Holocene catchment-lake dynamics in the Tasmanian World Heritage Area, Australia

    Get PDF
    Environmental changes such as climate, land use, and fire activity affect terrestrial and aquatic ecosystems at multiple scales of space and time. Due to the nature of the interactions between terrestrial and aquatic dynamics, an integrated study using multiple proxies is critical for a better understanding of climate- and fire-driven impacts on environmental change. Here we present a synthesis of biological and geochemical data (pollen, spores, diatoms, micro X-ray fluorescence scanning, CN content, and stable isotopes) from Dove Lake, Tasmania, allowing us to disentangle long-term terrestrial-aquatic dynamics through the last 12 kyear. We found that aquatic dynamics at Dove Lake are tightly linked to vegetation shifts dictated by regional hydroclimatic variability in western Tasmania. A major shift in the diatom composition was detected at ca. 6 ka, and it was likely mediated by changes in regional terrestrial vegetation, charcoal, and iron accumulation. High rainforest abundance prior ca. 6 ka is linked to increased terrestrially derived organic matter delivery into the lake, higher dystrophy, anoxic bottom conditions, and lower light penetration depths. The shift to a landscape with a higher proportion of sclerophyll species following the intensification of El Niño-Southern Oscillation since ca. 6 ka corresponds to a decline in terrestrial organic matter input into Dove Lake, lower dystrophy levels, higher oxygen availability, and higher light availability for algae and littoral macrophytes. This record provides new insights on terrestrial-aquatic dynamics that could contribute to the conservation management plans in the Tasmanian World Heritage Area and in temperate high-altitude dystrophic systems elsewhere

    The indirect response of an aquatic ecosystem to long-term climate-driven terrestrial vegetation in a subalpine temperate lake

    Get PDF
    Aim: To assess whether climate directly influences aquatic ecosystem dynamics in the temperate landscape of Tasmania or whether the effects of long-term climatic change are mediated through the terrestrial environment (indirect climate influence). Location: Paddy’s Lake is located at 1065 m a.s.l. in temperate north-west Tasmania, a continental island south-east of mainland Australia (41°15–43°250 S; 145°00– 148°150 E). Methods: We developed a new 13,400 year (13.4 kyr) palaeoecological dataset of lake sediment subfossil cladocerans (aquatic grazers), bulk organic sediment carbon (C%) and nitrogen (N%) and d13C and d15N stable isotopes. Comparison of this new data was made with a recently published pollen, geochemistry and charcoal records from Paddy’s Lake. Results: Low cladoceran diversity at Paddy’s Lake is consistent with other temperate Southern Hemisphere lakes. The bulk sediment d15N values demonstrate a significant lagged negative response to pollen accumulation rate (pollen AR). Compositional shifts of dominant cladoceran taxa (Bosmina meridionalis and Alona guttata) occur following changes in both pollen AR and pollen (vegetation) composition throughout the 13.4 kyr record at Paddy’s Lake. The d15N values demonstrate a significant positive lagged relationship to the oligotrophic:eutrophic cladoceran ratio. Main conclusions: Long-term changes in cladoceran composition lag changes in both pollen AR and terrestrial vegetation composition. We interpret pollen AR as reflecting climate-driven changes in terrestrial vegetation productivity and conclude that climate-driven shifts in vegetation are the principal driver of the cladoceran community during the last ca. 13.4 kyr. The significant negative lagged relationship between pollen AR and d15N reflects the primary control of vegetation productivity over within-lake nutrient status. Thus, we conclude that the effects of long-term climate change on aquatic ecosystem dynamics at our site are indirect and mediated by the terrestrial environment. Vegetation productivity controls organic soil development and has a direct influence over lake trophic status via changes in the delivery of terrestrial organic matter into the lake

    Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study

    Get PDF
    Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p&lt;00001), age 70 years or older versus younger than 70 years (230 [165-322], p&lt;00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p&lt;00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • 

    corecore