145 research outputs found

    Altered modulation of lamin A/C-HDAC2 interaction and p21 expression during oxidative stress response in HGPS

    Get PDF
    Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson-Gilford progeria, a severe LMNA-linked syndrome associated with bone resorption, cardiovascular disorders, and premature aging, we found altered modulation of CDKN1A, encoding p21, upon oxidative stress induction, and accumulation of senescence markers during stress recovery. In this context, we unraveled a dynamic interaction of lamin A/C with HDAC2, an histone deacetylase that regulates CDKN1A expression. In control skin fibroblasts, lamin A/C is part of a protein complex including HDAC2 and its histone substrates; protein interaction is reduced at the onset of DNA damage response and recovered after completion of DNA repair. This interplay parallels modulation of p21 expression and global histone acetylation, and it is disrupted by LMNAmutations leading to progeroid phenotypes. In fact, HGPS cells show impaired lamin A/C-HDAC2 interplay and accumulation of p21 upon stress recovery. Collectively, these results link altered physical interaction between lamin A/C and HDAC2 to cellular and organism aging. The lamin A/C-HDAC2 complex may be a novel therapeutic target to slow down progression of progeria symptoms

    Real de-escalation or escalation in disguise?

    Get PDF
    The past two decades have seen an unprecedented trend towards de-escalation of surgical therapy in the setting of early BC, the most prominent examples being the reduction of re-excision rates for close surgical margins after breast-conserving surgery and replacing axillary lymph node dissection by less radical procedures such as sentinel lymph node biopsy (SLNB). Numerous studies confirmed that reducing the extent of surgery in the upfront surgery setting does not impact locoregional recurrences and overall outcome. In the setting of primary systemic treatment, there is an increased use of less invasive staging strategies reaching from SLNB and targeted lymph node biopsy (TLNB) to targeted axillary dissection (TAD). Omission of any axillary surgery in the presence of pathological complete response in the breast is currently being investigated in clinical trials. On the other hand, concerns have been raised that surgical de-escalation might induce an escalation of other treatment modalities such as radiation therapy. Since most trials on surgical de-escalation did not include standardized protocols for adjuvant radiotherapy, it remains unclear, whether the effect of surgical de-escalation was valid in itself or if radiotherapy compensated for the decreased surgical extent. Uncertainties in scientific evidence may therefore lead to escalation of radiotherapy in some settings of surgical de-escalation. Further, the increasing rate of mastectomies including contralateral procedures in patients without genetic risk is alarming. Future studies of locoregional treatment strategies need to include an interdisciplinary approach to integrate de-escalation approaches combining surgery and radiotherapy in a way that promotes optimal quality of life and shared decision-making

    Acid sensing ion channel 2: A new potential player in the pathophysiology of multiple sclerosis

    Get PDF
    Acid-sensing ion channels (ASICs) are proton-gated channels involved in multiple biological functions such as: pain modulation, mechanosensation, neurotransmission, and neurodegeneration. Earlier, we described the genetic association, within the Nuoro population, between Multiple Sclerosis (MS) and rs28936, located in ASIC2 3′UTR. Here we investigated the potential involvement of ASIC2 in MS inflammatory process. We induced experimental autoimmune encephalomyelitis (EAE) in wild-type (WT), knockout Asic1 −/− and Asic2 −/− mice and observed a significant reduction of clinical score in Asic1 −/− mice and a significant reduction in the clinical score in Asic2 −/− mice in a limited time window (i.e., at days 20–23 after immunization). Immunohistochemistry confirmed the reduction in adaptive immune cell infiltrates in the spinal cord of EAE Asic1 −/− mice. Analysis of mechanical allodynia, showed a significant higher pain threshold in Asic2 −/− mice under physiological conditions, before immunization, as compared to WT mice and Asic1 −/−. A significant reduction in pain threshold was observed in all three strains of mice after immunization. More importantly, analysis of human autoptic brain tissue in MS and control samples showed an increase of ASIC2 mRNA in MS samples. Subsequently, in vitro luciferase reporter gene assays, showed that ASIC2 expression is under possible miRNA regulation, in a rs28936 allele-specific manner. Taken together, these findings suggest a potential role of ASIC2 in the pathophysiology of MS

    Complex interplay between neutral and adaptive evolution shaped differential genomic background and disease susceptibility along the Italian peninsula

    Get PDF
    The Italian peninsula has long represented a natural hub for human migrations across the Mediterranean area, being involved in several prehistoric and historical population movements. Coupled with a patchy environmental landscape entailing different ecological/cultural selective pressures, this might have produced peculiar patterns of population structure and local adaptations responsible for heterogeneous genomic background of present-day Italians. To disentangle this complex scenario, genome-wide data from 780 Italian individuals were generated and set into the context of European/Mediterranean genomic diversity by comparison with genotypes from 50 populations. To maximize possibility of pinpointing functional genomic regions that have played adaptive roles during Italian natural history, our survey included also ∼250,000 exomic markers and ∼20,000 coding/regulatory variants with well-established clinical relevance. This enabled fine-grained dissection of Italian population structure through the identification of clusters of genetically homogeneous provinces and of genomic regions underlying their local adaptations. Description of such patterns disclosed crucial implications for understanding differential susceptibility to some inflammatory/autoimmune disorders, coronary artery disease and type 2 diabetes of diverse Italian subpopulations, suggesting the evolutionary causes that made some of them particularly exposed to the metabolic and immune challenges imposed by dietary and lifestyle shifts that involved western societies in the last centuries

    A meta-analysis on age-associated changes in blood DNA methylation: Results from an original analysis pipeline for Infinium 450k data

    Get PDF
    open18noAging is characterized by a profound remodeling of the epigenetic architecture in terms of DNA methylation patterns. To date the most effective tool to study genome wide DNA methylation changes is Infinium HumanMethylation450 BeadChip (Infinium 450k). Despite the wealth of tools for Infinium 450k analysis, the identification of the most biologically relevant DNA methylation changes is still challenging. Here we propose an analytical pipeline to select differentially methylated regions (DMRs), tailored on microarray architecture, which is highly effective in highlighting biologically relevant results. The pipeline groups microarray probes on the basis of their localization respect to CpG islands and genic sequences and, depending on probes density, identifies DMRs through a single-probe or a regioncentric approach that considers the concomitant variation of multiple adjacent CpG probes. We successfully applied this analytical pipeline on 3 independent Infinium 450k datasets that investigated age-associated changes in blood DNA methylation. We provide a consensus list of genes that systematically vary in DNA methylation levels from 0 to 100 years and that have a potentially relevant role in the aging process.This work was supported by the European Union's Seventh Framework Programme (grant agreement no. 259679 “IDEAL”, grant agreement no. 266486 “NU-AGE”, grant agreement no. 305280), by CARISBO foundation and by the Italian Ministry of Health, Progetto Ricerca Finalizzata 2008, convenzione 35: “An integrated approach to identify functional, biochemical and genetic markers for diagnostic and prognostic purposes in the elderly, in the centenarians and in people with dementia, Alzheimer's disease, mild cognitive impairment”.openBacalini MG; Boattini A; Gentilini D; Giampieri E; Pirazzini C; Giuliani C; Fontanesi E; Remondini D; Capri M; Del Rio A; Luiselli D; Vitale G; Mari D; Castellani G; Di Blasio AM; Salvioli S; Franceschi C; Garagnani P.Bacalini MG; Boattini A; Gentilini D; Giampieri E; Pirazzini C; Giuliani C; Fontanesi E; Remondini D; Capri M; Del Rio A; Luiselli D; Vitale G; Mari D; Castellani G; Di Blasio AM; Salvioli S; Franceschi C; Garagnani P

    Molecular Characterization of Cancer Associated Fibroblasts in Prostate Cancer

    Get PDF
    Background: Stromal components surrounding epithelial cancer cells seem to play a pivotal role during epithelial-to-mesenchymal transition (EMT), tumor invasion, and metastases. To identify the molecular mechanisms underlying tumor–stroma interactions may yield novel therapeutic targets for prostate cancer. Methods: Gene expression profile of prostate-cancer associated fibroblast (PCAF) and prostate non-cancer associated fibroblast (PNAF) cells isolated from radical prostatectomy was performed by Illumina, analyzed, and further processed by Ingenuity®: IPA® software. qRT-PCR was performed on an independent set of 17 PCAF, 12 PNAF, and 12 fibroblast cell lines derived from patients with benign prostatic hyperplasia (BPHF). Results: Using microarray analysis, we found six upregulated genes and two downregulated genes in PCAFs compared to PNAFs. To validate microarray results, we performed qRT-PCR for the most significantly regulated genes involved in the modulation of proliferation and androgen resistance on an independent set of PNAF, PCAF, and BHPF samples. We confirmed the increased expression of SCARB1, MAPK3K1, and TGF-β as well as the decreased expression of S100A10 in PCAFs compared to PNAFs and BPHFs. Conclusions: These results provide strong evidence that the observed changes in the gene expression profile of PCAFs can contribute to functional alteration of adjacent prostate cancer cells

    Molecular Characterization of Cancer Associated Fibroblasts in Prostate Cancer

    Get PDF
    Background: Stromal components surrounding epithelial cancer cells seem to play a pivotal role during epithelial-to-mesenchymal transition (EMT), tumor invasion, and metastases. To identify the molecular mechanisms underlying tumor-stroma interactions may yield novel therapeutic targets for prostate cancer. Methods: Gene expression profile of prostate-cancer associated fibroblast (PCAF) and prostate non-cancer associated fibroblast (PNAF) cells isolated from radical prostatectomy was performed by Illumina, analyzed, and further processed by Ingenuity (R) : IPA (R) software. qRT-PCR was performed on an independent set of 17 PCAF, 12 PNAF, and 12 fibroblast cell lines derived from patients with benign prostatic hyperplasia (BPHF). Results: Using microarray analysis, we found six upregulated genes and two downregulated genes in PCAFs compared to PNAFs. To validate microarray results, we performed qRT-PCR for the most significantly regulated genes involved in the modulation of proliferation and androgen resistance on an independent set of PNAF, PCAF, and BHPF samples. We confirmed the increased expression of SCARB1, MAPK3K1, and TGF-beta as well as the decreased expression of S100A10 in PCAFs compared to PNAFs and BPHFs. Conclusions: These results provide strong evidence that the observed changes in the gene expression profile of PCAFs can contribute to functional alteration of adjacent prostate cancer cells

    Cadherin 2-Related Arrhythmogenic Cardiomyopathy Prevalence and Clinical Features

    Get PDF
    Background:Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the right and left ventricle, often causing ventricular dysfunction and life-threatening arrhythmias. Variants in desmosomal genes account for up to 60% of cases. Our objective was to establish the prevalence and clinical features of ACM stemming from pathogenic variants in the nondesmosomal cadherin 2 (CDH2), a novel genetic substrate of ACM.Methods:A cohort of 500 unrelated patients with a definite diagnosis of ACM and no disease-causing variants in the main ACM genes was assembled. Genetic screening of CDH2 was performed through next-generation or Sanger sequencing. Whenever possible, cascade screening was initiated in the families of CDH2-positive probands, and clinical evaluation was performed.Results:Genetic screening of CDH2 led to the identification of 7 rare variants: 5, identified in 6 probands, were classified as pathogenic or likely pathogenic. The previously established p.D407N pathogenic variant was detected in 2 additional probands. Probands and family members with pathogenic/likely pathogenic variants in CDH2 were clinically evaluated, and along with previously published cases, altogether contributed to the identification of gene-specific features (13 cases from this cohort and 11 previously published, for a total of 9 probands and 15 family members). Ventricular arrhythmic events occurred in most CDH2-positive subjects (20/24, 83%), while the occurrence of heart failure was rare (2/24, 8.3%). Among probands, sustained ventricular tachycardia and sudden cardiac death occurred in 5/9 (56%).Conclusions:In this worldwide cohort of previously genotype-negative ACM patients, the prevalence of probands with CDH2 pathogenic/likely pathogenic variants was 1.2% (6/500). Our data show that this cohort of CDH2-ACM patients has a high incidence of ventricular arrhythmias, while evolution toward heart failure is rare.</p
    corecore