249 research outputs found
Nanostructured nickel film deposition on carbon fibers for improving reinforcement-matrix interface in metal matrix composites
The issues in dispersing any form of carbon in metal matrix is the major problem in the field of metal matrix
composites with carbon reinforcement (MMCcr). The low wettability of carbon in molten metals and the
difference in density are some of the difficulties to obtain a good dispersion of carbon fibers in the matrix and,
as a consequence, an improvement of some critical properties for metals in a wide range of application
(mechanical properties, electrical properties, optical properties). For this reason, the aim of this work is to
obtain a metallic coated carbon fiber to enhance the interaction between the reinforcement and the matrix.
Moreover, also the density of carbon fibers could be adjusted depending on the thickness of the coating.
Electroless Nickel-Phosphorus Plating (ENP) is one of the candidate to be a coating technique to improve the
interaction between the carbon fibers and the metal matrix. Despite of its versatility in terms of complex
geometry of the substrate and homogeneity and adhesion of the coating, the presence of the phosphorus in
the alloy could create some problems with the metal matrix such as the formation of metal-phosphorus
products that can drastically decrease the mechanical properties of the composite. For this reason, in this
work, is presented a new way of Electroless Pure Nickel Plating (EPP) without any introduction of phosphorus
in the nickel coating. The dependence of the coating thickness and the density of the coated fibers were
studied under different plating parameters (temperature of the plating solution, deposition rate and plating
solution composition). All the samples were characterized with SEM and XRD and the thickness, density and
homogeneity were compared for all the samples obtained
Lightweight metallic matrix composites. Development of new composites material reinforced with carbon structures
Carbon nano/micro-structures used as fillers in metallic lightweight alloys matrix composites are receiving considerable attention in scientific research and industrial applications. Aluminum and magnesium are the most studied light metals used as matrices in metal composites materials principally for their low density (respectively 2.7 g/cm3 and 1.7 g/cm3) and low melting temperature (around 660 °C for both metals). A good interaction between matrix and fillers is the first step to obtain an increase in bulk properties; furthermore, the manufacturing procedure of the composite is fundamental in terms of quality of fillers dispersion. In this work the influence of surface modifications for three classes of carbon fillers for aluminum and magnesium alloy (AZ63) as matrices is
studied. In particular, the selected fillers are short carbon micro fibres (SCMFs), carbon woven fabrics (CWF) and unidirectional yarn carbon fibres (UYFs). The surface modification was carried out by a direct coating of pure nickel on fibres. The electroless pure nickel plating was chosen as coating technique and the use of hydrazine as reducing agent has prevented the co-deposition of other elements (such as P or B). SEM and EDS analyses were performed to study the effect of surface modifications. The mechanical properties of manufactured composites were evaluated by four point flexural tests
according to ASTM C1161 (room temperature). Results confirm improved interactions
between matrix and fillers, and the specific interaction was studied for any chosen
reinforcement
Diffusion aluminide coatings for hot corrosion and oxidation protection of nickel-based superalloys. Effect of fluoride-based activator salts
The influence of two different fluoride-based activator salts (NH4F and AlF3) was studied for diffusion aluminide coatings obtained via pack cementation on a Ni-based superalloy (René
108DS). The resistance to oxidation and hot corrosion was assessed as a function of the concentration of activator salts used during the synthesis process by means of pack cementation. Two different concentrations were selected for activator salts (respecting the equimolarity of fluoride in the synthesis) and the obtained diffusion coatings were compared in terms of morphology, thickness and composition, as well as in terms of microstructural evolution after high temperature exposure. Isothermal oxidation tests were conducted at 1050 C in air for 100 h in a tubular furnace. The oxidation kinetics were evaluated by measuring the weight variation with exposure time. The microstructural evolution induced by the high temperature exposure was investigated by SEM microscopy, EDS
analysis and X-ray diffraction. Results showed that the coatings obtained with AlF3 activator salt are thicker than those obtained using NH4F as a consequence of different growth mechanism during
pack-cementation. Despite this evidence, it was found that the NH4F coatings show a better oxidation resistance, both in terms of total mass gain and of quality of the microstructure of the thermally grown oxide. On the other hand, coatings produced with high concentration of AlF3 exhibited a better resistance in hot corrosion conditions, showing negligible mass variations after 200 h of high
temperature exposure to aggressive NaCl and Na2SO4 salts
Technical effectiveness of cement-based mortar for high-reflective building envelope through building energy simulations: preliminary results
In areas with high levels of solar radiation, decreasing the amount of solar energy absorbed by the building envelope is useful to reduce the need of air conditioning and "heat island" effects. Most high-reflective products, however, suffer from low durability. The COOL-IT project is developing an innovative high-reflective cement based mortar for precast products to be used as outer layer in buildings for both vertical and horizontal surfaces, or for road pavement. The mix design is aimed at increasing the durability of this cement-based component while retaining high reflectance to solar radiation. This paper presents the preliminary results of the project, based on the simulation of the energy demand of a residential building, intended as a support to optimize the proposed mixes. The model is analysed in three different locations in Italy, for one year of operation. This allows evaluating the trade-off of the energy demand between the winter increase and the summer reduction
Ytterbium Disilicate/Monosilicate Multilayer Environmental Barrier Coatings: Influence of Atmospheric Plasma Spray Parameters on Composition and Microstructure
first_pagesettingsOrder Article Reprints
Open AccessArticle
Ytterbium Disilicate/Monosilicate Multilayer Environmental Barrier Coatings: Influence of Atmospheric Plasma Spray Parameters on Composition and Microstructure
by Giulia Di Iorio,Laura Paglia *ORCID,Giulia PedrizzettiORCID,Virgilio GenovaORCID,Francesco MarraORCID,Cecilia BartuliORCID andGiovanni PulciORCID
INSTM Reference Laboratory for Materials and Surface Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy
*
Author to whom correspondence should be addressed.
Coatings 2023, 13(9), 1602; https://doi.org/10.3390/coatings13091602
Original submission received: 10 August 2023 / Revised: 31 August 2023 / Accepted: 11 September 2023 / Published: 13 September 2023
Downloadkeyboard_arrow_down Browse Figures Review Reports Versions Notes
Abstract
SiC/SiC ceramic matrix composites (SiCf/SiC CMCs) are regarded as the new materials for the hot-section components of aircraft gas turbine engines, since they have one-third of the density of metallic superalloys, a higher temperature capability, good mechanical strength, and excellent thermal shock resistance. However, high-temperature water-vapor-rich combustion gases can induce severe surface recession phenomena in SiC/SiC leading to component failure. For this reason, it is necessary to design protective coatings, i.e., environmental barrier coatings (EBCs), able to protect the SiC/SiC surface in combustion environments. In the present work, ytterbium monosilicate (Yb2SiO5), stable when exposed to water vapor at high temperatures, and ytterbium disilicate (Yb2Si2O7), characterized by a thermal expansion coefficient closer to that of the substrate, were selected for a multilayer EBC system. EBCs were processed using the atmospheric plasma spray (APS) technique. A set of deposition parameters were tested, varying the power of the torch, and the composition and microstructure of the deposited coatings were studied in terms of porosity, crack density, and post-deposition phase retention by performing SEM, EDS, and XRD analysis. The results allow for the definition of the influence of deposition parameters on the final properties of multilayer EBC coatings
Hypoxia sustains glioblastoma radioresistance through ERKs/DNA-PKcs/HIF-1α functional interplay
The molecular mechanisms by which glioblastoma multiforme (GBM) refracts and becomes resistant to radiotherapy treatment remains largely unknown. This radioresistance is partly due to the presence of hypoxic regions, which are frequently found in GBM tumors. We investigated the radiosensitizing effects of MEK/ERK inhibition on GBM cell lines under hypoxic conditions. Four human GBM cell lines, T98G, U87MG, U138MG and U251MG were treated with the MEK/ERK inhibitor U0126, the HIF-1α inhibitor FM19G11 or γ-irradiation either alone or in combination under hypoxic conditions. Immunoblot analysis of specific proteins was performed in order to define their anti‑oncogenic or radiosensitizing roles in the different experimental conditions. MEK/ERK inhibition by U0126 reverted the transformed phenotype and significantly enhanced the radiosensitivity of T98G, U87MG, U138MG cells but not of the U251MG cell line under hypoxic conditions. U0126 and ERK silencing by siRNA reduced the levels of DNA protein kinase catalytic subunit (DNA-PKcs), Ku70 and K80 proteins and clearly reduced HIF-1α activity and protein expression. Furthermore, DNA-PKcs siRNA-mediated silencing counteracted HIF-1α activity and downregulated protein expression suggesting that ERKs, DNA-PKcs and HIF-1α cooperate in radioprotection of GBM cells. Of note, HIF-1α inhibition under hypoxic conditions drastically radiosensitized all cell lines used. MEK/ERK signal transduction pathway, through the sustained expression of DNA-PKcs, positively regulates HIF-1α protein expression and activity, preserving GBM radioresistance in hypoxic condition
PD/1-PD-Ls Checkpoint: Insight on the Potential Role of NK Cells
The identification of inhibitory NK cell receptors specific for HLA-I molecules (KIRs and NKG2A) provided the molecular basis for clarifying the mechanism by which NK cells kill transformed cells while sparing normal cells. The direct interactions between inhibitory NK cell receptors and their HLA-I ligands enable NK cells to distinguish healthy from transformed cells, which frequently show an altered expression of HLA-I molecules. Indeed, NK cells can kill cancer cells that have lost, or under express, HLA-I molecules, but not cells maintaining their expression. In this last case, it is possible to use anti-KIR or anti-NKG2A monoclonal antibodies to block the inhibitory signals generated by these receptors and to restore the anti-tumor NK cell activity. These treatments fall within the context of the new immunotherapeutic strategies known as "immune checkpoint blockade." These antibodies are currently used in clinical trials in the treatment of both hematological and solid tumors. However, a more complex scenario has recently emerged. For example, NK cells can also express additional immune checkpoints, including PD-1, that was originally described on T lymphocytes, and whose ligands (PD-Ls) are usually overexpressed on tumor cells. Thus, it appears that the activation of NK cells and their potentially harmful effector functions are under the control of different immune checkpoints and their simultaneous expression could provide additional levels of suppression to anti-tumor NK cell responses. This review is focused on PD-1 immune checkpoint in NK cells, its potential role in immunosuppression, and the therapeutic strategies to recover NK cell cytotoxicity and anti-tumor effect
- …