5,521 research outputs found
Parametric gravity wave detector
Since 1978 superconducting coupled cavities have been proposed as a sensitive
detector of gravitational waves. The interaction of the gravitational wave with
the cavity walls, and the esulting motion, induces the transition of some
energy from an initially excited cavity mode to an empty one. The energy
transfer is maximum when the frequency of the wave is equal to the frequency
difference of the two cavity modes. In 1984 Reece, Reiner and Melissinos built
a detector of the type proposed, and used it as a transducer of harmonic
mechanical motion, achieving a sensitivity to fractional deformations of the
order dx/x ~ 10^(-18). In this paper the working principles of the detector are
discussed and the last experimental results summarized. New ideas for the
development of a realistic gravitational waves detector are considered; the
outline of a possible detector design and its expected sensitivity are also
shown.Comment: 9 pages, 6 figures. Talk given at the Workshop on Electromagnetic
Probes of Fundamentals Physics, Erice (Italy), October 200
A detector of gravitational waves based on coupled microwave cavities
Since 1978 superconducting coupled cavities have been proposed as sensitive
detector of gravitational waves. The interaction of the gravitational wave with
the cavity walls, and the resulting motion, induces the transition of some
electromagnetic energy from an initially excited cavity mode to an empty one.
The energy transfer is maximum when the frequency of the wave is equal to the
frequency difference of the two cavity modes. In this paper the basic
principles of the detector are discussed. The interaction of a gravitational
wave with the cavity walls is studied in the proper reference frame of the
detector, and the coupling between two electromagnetic normal modes induced by
the wall motion is analyzed in detail. Noise sources are also considered; in
particular the noise coming from the brownian motion of the cavity walls is
analyzed. Some ideas for the developement of a realistic detector of
gravitational waves are discussed; the outline of a possible detector design
and its expected sensitivity are also shown.Comment: 29 pages, 12 eps figures. Typeset by REVTe
The rf control and detection system for PACO the parametric converter detector
In this technical note the rf control and detection system for a detector of
small harmonic displacements based on two coupled microwave cavities (PACO) is
presented. The basic idea underlying this detector is the principle of
parametric power conversion between two resonant modes of the system,
stimulated by the (small) harmonic modulation of one system parameter. In this
experiment we change the cavity length applying an harmonic voltage to a
piezo-electric crystal. The system can achieve a great sensitivity to small
harmonic displacements and can be an interesting candidate for the detection of
small, mechanically coupled, interactions (e.g. high frequency gravitational
waves).Comment: 13 pages, 4 postscript figure
A detector of small harmonic displacements based on two coupled microwave cavities
The design and test of a detector of small harmonic displacements is
presented. The detector is based on the principle of the parametric conversion
of power between the resonant modes of two superconducting coupled microwave
cavities. The work is based on the original ideas of Bernard, Pegoraro, Picasso
and Radicati, who, in 1978, suggested that superconducting coupled cavities
could be used as sensitive detectors of gravitational waves, and on the work of
Reece, Reiner and Melissinos, who, {in 1984}, built a detector of this kind.
They showed that an harmonic modulation of the cavity length l produced an
energy transfer between two modes of the cavity, provided that the frequency of
the modulation was equal to the frequency difference of the two modes. They
achieved a sensitivity to fractional deformations of dl/l~10^{-17} Hz^{-1/2}.
We repeated the Reece, Reiner and Melissinos experiment, and with an improved
experimental configuration and better cavity quality, increased the sensitivity
to dl/l~10^{-20} Hz^{-1/2}. In this paper the basic principles of the device
are discussed and the experimental technique is explained in detail. Possible
future developments, aiming at gravitational waves detection, are also
outlined.Comment: 28 pages, 12 eps figures, ReVteX. \tightenlines command added to
reduce number of pages. The following article has been accepted by Review of
Scientific Instruments. After it is published, it will be found at
http://link.aip.org/link/?rs
XPS characterization of niobium for RF cavities
none4A. Daccà; G. Gemme; L. Mattera; R. ParodiA., Daccà; G., Gemme; Mattera, Lorenzo; R., Parod
Microwave apparatus for gravitational waves observation
In this report the theoretical and experimental activities for the
development of superconducting microwave cavities for the detection of
gravitational waves are presented.Comment: 42 pages, 28 figure
Superconducting cavity transducer for resonant gravitational radiation antennas
Parametric transducers, such as superconducting rf cavities, can boost the
bandwidth and sensitivity of the next generation resonant antennas, thanks to a
readily available technology. We have developed a fully coupled dynamic model
of the system "antenna--transducer" and worked out some estimates of
signal--to--noise ratio and the stability conditions in various experimental
configurations. We also show the design and the prototype of a rf cavity which,
together with a suitable read--out electronic, will be used as a test bench for
the parametric transducer.Comment: 7 pages, 3 eps figures. Presented at the 6th Amaldi Conference on
Gravitational Waves (2005). Accepted for publication in Journal of Physics:
Conference Serie
Results of the IGEC-2 search for gravitational wave bursts during 2005
The network of resonant bar detectors of gravitational waves resumed
coordinated observations within the International Gravitational Event
Collaboration (IGEC-2). Four detectors are taking part in this collaboration:
ALLEGRO, AURIGA, EXPLORER and NAUTILUS. We present here the results of the
search for gravitational wave bursts over 6 months during 2005, when IGEC-2 was
the only gravitational wave observatory in operation. The network data analysis
implemented is based on a time coincidence search among AURIGA, EXPLORER and
NAUTILUS, keeping the data from ALLEGRO for follow-up studies. With respect to
the previous IGEC 1997-2000 observations, the amplitude sensitivity of the
detectors to bursts improved by a factor about 3 and the sensitivity bandwidths
are wider, so that the data analysis was tuned considering a larger class of
detectable waveforms. Thanks to the higher duty cycles of the single detectors,
we decided to focus the analysis on three-fold observation, so to ensure the
identification of any single candidate of gravitational waves (gw) with high
statistical confidence. The achieved false detection rate is as low as 1 per
century. No candidates were found.Comment: 10 pages, to be submitted to Phys. Rev.
- …
