42 research outputs found

    Auditory stimulation improves motor function and caretaker burden in children with cerebral palsy- A randomized double blind study.

    Get PDF
    AIM: To investigate the impact of auditory stimulation on motor function in children with cerebral palsy (CP) and disabling hypertonia. METHOD: 9 matched pairs (age: 7y5m, SD 4y1m; 13 boys; gross-motor-functional-classification-scale: median 4; manual-ability-classification-system: median 4) were randomized to receive either auditory stimulation embedded in music (study, n = 9) or music alone (sham, control, n = 9) for at least 10 minutes 4 times a week for 4 weeks. Goal-Attainment-Scale, Care-and-Comfort-Hypertonicity-Questionnaire, Gross-Motor-Function-Measure and Quality-of-Upper-Extremity-Skills-Test (QUEST) were assessed before and 5 months following intervention. RESULT: Children receiving auditory stimulation attained more goals than children who listened to music alone (p = 0.002). Parents reported improved care and comfort in children in the study group compared to a slight deterioration in controls (p = 0.002). Upper extremity skills improved in the study group compared to controls (p = 0.006). Similar gross motor function changes were documented in both groups (p = 0.41). One participant reported increased seizure frequency; no other participants with epilepsy reported increased seizure frequency (n = 6/18) and no other adverse events were reported. INTERPRETATION: Auditory stimulation alleviated hypertonia and improved fine and gross motor functions

    A hypomorphic allele of ZAP-70 reveals a distinct thymic threshold for autoimmune disease versus autoimmune reactivity

    Get PDF
    ZAP-70 is critical for T cell receptor (TCR) signaling. Tyrosine to phenylalanine mutations of Y315 and Y319 in ZAP-70 suggest these residues function to recruit downstream effector molecules, but mutagenesis and crystallization studies reveal that these residues also play an important role in autoinhibition ZAP-70. To address the importance of the scaffolding function, we generated a zap70 mutant mouse (YYAA mouse) with Y315 and Y319 both mutated to alanines. These YYAA mice reveal that the scaffolding function is important for normal development and function. Moreover, the YYAA mice have many similarities to a previously identified ZAP-70 mutant mouse, SKG, which harbors a distinct hypomorphic mutation. Both YYAA and SKG mice have impaired T cell development and hyporesponsiveness to TCR stimulation, markedly reduced numbers of thymic T regulatory cells and defective positive and negative selection. YYAA mice, like SKG mice, develop rheumatoid factor antibodies, but fail to develop autoimmune arthritis. Signaling differences that result from ZAP-70 mutations appear to skew the TCR repertoire in ways that differentially influence propensity to autoimmunity versus autoimmune disease susceptibility. By uncoupling the relative contribution from T regulatory cells and TCR repertoire during thymic selection, our data help to identify events that may be important, but alone are insufficient, for the development of autoimmune disease

    The Development and Validation of a Novel Nanobody-Based Competitive ELISA for the Detection of Foot and Mouth Disease 3ABC Antibodies in Cattle

    Get PDF
    Effective management of foot and mouth disease (FMD) requires diagnostic tests to distinguish between infected and vaccinated animals (DIVA). To address this need, several enzyme-linked immunosorbent assay (ELISA) platforms have been developed, however, these tests vary in their sensitivity and specificity and are very expensive for developing countries. Camelid-derived single-domain antibodies fragments so-called Nanobodies, have demonstrated great efficacy for the development of serological diagnostics. This study describes the development of a novel Nanobody-based FMD 3ABC competitive ELISA, for the serological detection of antibodies against FMD Non-Structural Proteins (NSP) in Uganda cattle herds. This in-house ELISA was validated using more than 600 sera from different Uganda districts, and virus serotype specificities. The evaluation of the performance of the assay demonstrated high diagnostic sensitivity and specificity of 94 % (95 % CI: 88.9–97.2), and 97.67 % (95 % CI: 94.15–99.36) respectively, as well as the capability to detect NSP-specific antibodies against multiple FMD serotype infections. In comparison with the commercial PrioCHECK FMDV NSP-FMD test, there was a strong concordance and high correlation and agreement in the performance of the two tests. This new developed Nanobody based FMD 3ABC competitive ELISA could clearly benefit routine disease diagnosis, the establishment of disease-free zones, and the improvement of FMD management and control in endemically complex environments, such as those found in Africa

    The Development and Validation of a Novel Nanobody-Based Competitive ELISA for the Detection of Foot and Mouth Disease 3ABC Antibodies in Cattle

    Get PDF
    Effective management of foot and mouth disease (FMD) requires diagnostic tests to distinguish between infected and vaccinated animals (DIVA). To address this need, several enzyme-linked immunosorbent assay (ELISA) platforms have been developed, however, these tests vary in their sensitivity and specificity and are very expensive for developing countries. Camelid-derived single-domain antibodies fragments so-called Nanobodies, have demonstrated great efficacy for the development of serological diagnostics. This study describes the development of a novel Nanobody-based FMD 3ABC competitive ELISA, for the serological detection of antibodies against FMD Non-Structural Proteins (NSP) in Uganda cattle herds. This in-house ELISA was validated using more than 600 sera from different Uganda districts, and virus serotype specificities. The evaluation of the performance of the assay demonstrated high diagnostic sensitivity and specificity of 94 % (95 % CI: 88.9-97.2), and 97.67 % (95 % CI: 94.15-99.36) respectively, as well as the capability to detect NSP-specific antibodies against multiple FMD serotype infections. In comparison with the commercial PrioCHECK FMDV NSP-FMD test, there was a strong concordance and high correlation and agreement in the performance of the two tests. This new developed Nanobody based FMD 3ABC competitive ELISA could clearly benefit routine disease diagnosis, the establishment of disease-free zones, and the improvement of FMD management and control in endemically complex environments, such as those found in Africa

    Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation

    Get PDF
    Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88–103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL

    Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold

    Get PDF
    AbstractThe molecular coupling of CAS and Crk in response to integrin activation is an evolutionary conserved signaling module that controls cell proliferation, survival and migration. However, when deregulated, CAS/Crk signaling also contributes to cancer progression and developmental defects in humans. Here we highlight recent advances in our understanding of how CAS/Crk complexes assemble in cells to modulate the actin cytoskeleton, and the molecular mechanisms that regulate this process. We discuss in detail the spatiotemporal dynamics of CAS/Crk assembly and how this scaffold recruits specific effector proteins that couple integrin signaling networks to the migration machinery of cells. We also highlight the importance of CAS/Crk signaling in the dual regulation of cell migration and survival mechanisms that operate in invasive cells during development and pathological conditions associated with cancer metastasis

    Co-overexpression of cortactin and CRKII increases migration and invasive potential in oral squamous cell carcinoma

    Get PDF
    Cortactin stimulates cell migration, invasion, and experimental metastasis. Overexpression of cortactin has been reported in several human cancers. CRK was originally identified as an oncogene product of v-CRK in a CT10 chicken retrovirus system. Overexpression of CRKII has been reported in several human cancers. CRKII regulates cell migration, morphogenesis, invasion, phagocytosis, and survival; however, the underlying mechanisms are not well understood. We evaluated the possibility of the combination of cortactin and CRKII as an appropriate molecular target for cancer gene therapy. The expression of cortactin and CRKII in 70 primary oral squamous cell carcinomas and 10 normal oral mucosal specimens was determined immunohistochemically, and the correlation of cortactin and CRKII co-overexpression with clinicopathological factors was evaluated. Co-overexpression of cortactin and CRKII was detected in 31 of 70 oral squamous cell carcinomas, the frequency being significantly greater than in normal oral mucosa. In addition, cortactin and CRKII co-overexpression was more frequent in higher-grade cancers according to the T classification, N classification, and invasive pattern. RNAi-mediated co-suppression of cortactin and CRKII expression reduced the migration and invasion potential of an oral squamous cell carcinoma cell line, OSC20. Downregulation of cortactin and CRKII expression also reduced the expression of vimentin, fibronectin, and N-cadherin. These results indicate that the co-overexpression of cortactin and CRKII may be tightly associated with an aggressive phenotype of oral squamous cell carcinoma. Therefore, we propose that the combination of cortactin and CRKII could be a potential molecular target of gene therapy by RNAi-targeting in oral squamous cell carcinoma
    corecore