67 research outputs found
Dynamical Structure Factor for the Alternating Heisenberg Chain: A Linked Cluster Calculation
We develop a linked cluster method to calculate the spectral weights of
many-particle excitations at zero temperature. The dynamical structure factor
is expressed as a sum of exclusive structure factors, each representing
contributions from a given set of excited states. A linked cluster technique to
obtain high order series expansions for these quantities is discussed. We apply
these methods to the alternating Heisenberg chain around the dimerized limit
(), where complete wavevector and frequency dependent spectral
weights for one and two-particle excitations (continuum and bound-states) are
obtained. For small to moderate values of the inter-dimer coupling parameter
, these lead to extremely accurate calculations of the dynamical
structure factors. We also examine the variation of the relative spectral
weights of one and two-particle states with bond alternation all the way up to
the limit of the uniform chain (). In agreement with Schmidt and
Uhrig, we find that the spectral weight is dominated by 2-triplet states even
at , which implies that a description in terms of triplet-pair
excitations remains a good quantitative description of the system even for the
uniform chain.Comment: 26 pages, 17 figure
Chern-Simons Theory for Magnetization Plateaus of Frustrated - Heisenberg model
The magnetization curve of the two-dimensional spin-1/2 -
Heisenberg model is investigated by using the Chern-Simons theory under a
uniform mean-field approximation. We find that the magnetization curve is
monotonically increasing for , where the system under zero
external field is in the antiferromagnetic N\'eel phase. For larger ratios of
, various plateaus will appear in the magnetization curve. In
particular, in the disordered phase, our result supports the existence of the
plateau and predicts a new plateau at .
By identifying the onset ratio for the appearance of the 1/2-plateau
with the boundary between the N\'eel and the spin-disordered phases in zero
field, we can determine this phase boundary accurately by this mean-field
calculation. Verification of these interesting results would indicate a strong
connection between the frustrated antiferromagnetic system and the quantum Hall
system.Comment: RevTeX 4, 4 pages, 3 EPS figure
Distribution of Eigenvalues for the Modular Group
The two-point correlation function of energy levels for free motion on the
modular domain, both with periodic and Dirichlet boundary conditions, are
explicitly computed using a generalization of the Hardy-Littlewood method. It
is shown that ion the limit of small separations they show an uncorrelated
behaviour and agree with the Poisson distribution but they have prominent
number-theoretical oscillations at larger scale. The results agree well with
numerical simulations.Comment: 72 pages, Latex, the fiogures mentioned in the text are not vital,
but can be obtained upon request from the first Autho
A Study of the S=1/2 Alternating Chain using Multiprecision Methods
In this paper we present results for the ground state and low-lying
excitations of the alternating Heisenberg antiferromagnetic chain. Our
more conventional techniques include perturbation theory about the dimer limit
and numerical diagonalization of systems of up to 28 spins. A novel application
of multiple precision numerical diagonalization allows us to determine
analytical perturbation series to high order; the results found using this
approach include ninth-order perturbation series for the ground state energy
and one magnon gap, which were previously known only to third order. We also
give the fifth-order dispersion relation and third-order exclusive neutron
scattering structure factor for one-magnon modes and numerical and analytical
binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs
available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
Effects of N-acetyl-cysteine on endothelial function and inflammation in patients with type 2 diabetes mellitus
Endothelial dysfunction has been associated with premature vascular disease. There is increasing data that N-acetyl-cysteine (NAC) may prevent or improve endothelial dysfunction. The aim of this study was to assess the effects of NAC on endothelial function in patients with type 2 diabetes mellitus, a population at high risk for endothelial dysfunction. Twenty-four patients with diabetes mellitus were assigned randomly to initial therapy with either 900 mg NAC or placebo twice daily in a double-blind, cross-over study design. Flowmediated vasodilation (FMD) of the brachial artery was assessed at baseline, after four weeks of therapy, after a four-week wash-out period, and after another four weeks on the opposite treatment. Plasma and red blood cell glutathione levels and high-sensitivity C-reactive protein (CRP) were measured at all four visits. At baseline, FMD was moderately impaired (3.7±2.9%). There was no significant change in FMD after four weeks of NAC therapy as compared to placebo (0.1±3.6% vs. 1.2±4.2%). Similarly, there was no significant change in glutathione levels. However, median CRP decreased from 2.35 to 2.14 mg/L during NAC therapy (p=0.04), while it increased from 2.24 to 2.65 mg/L with placebo. No side effects were noted during the treatment period. In this double-blind, randomized cross-over study, four weeks of oral NAC therapy failed to improve endothelial dysfunction in patients with diabetes mellitus. However, NAC therapy decreased CRP levels, suggesting that this compound may have some efficacy in reducing systemic inflammation
Low-energy fixed points of random Heisenberg models
The effect of quenched disorder on the low-energy and low-temperature
properties of various two- and three-dimensional Heisenberg models is studied
by a numerical strong disorder renormalization group method. For strong enough
disorder we have identified two relevant fixed points, in which the gap
exponent, omega, describing the low-energy tail of the gap distribution,
P(Delta) ~ Delta^omega is independent of disorder, the strength of couplings
and the value of the spin. The dynamical behavior of non-frustrated random
antiferromagnetic models is controlled by a singlet-like fixed point, whereas
for frustrated models the fixed point corresponds to a large spin formation and
the gap exponent is given by omega ~ 0. Another type of universality classes is
observed at quantum critical points and in dimerized phases but no infinite
randomness behavior is found, in contrast to one-dimensional models.Comment: 11 pages RevTeX, eps-figs included, language revise
- …