5,004 research outputs found

    Spectroscopy of blue horizontal branch stars in NGC 6656 (M22)

    Full text link
    Recent investigations revealed very peculiar properties of blue horizontal branch (HB) stars in \omega Centauri, which show anomalously low surface gravity and mass compared to other clusters and to theoretical models. \omega Centauri, however, is a very unusual object, hosting a complex mix of multiple stellar populations with different metallicity and chemical abundances. We measured the fundamental parameters (temperature, gravity, and surface helium abundance) of a sample of 71 blue HB stars in M22, with the aim of clarifying if the peculiar results found in \omega Cen are unique to this cluster. M22 also hosts multiple sub-populations of stars with a spread in metallicity, analogous to \omega Cen. The stellar parameters were measured on low-resolution spectra fitting the Balmer and helium lines with a grid of synthetic spectra. From these parameters, the mass and reddening were estimated. Our results on the gravities and masses agree well with theoretical expectations, matching the previous measurements in three "normal" clusters. The anomalies found in \omega Cen are not observed among our stars. A mild mass underestimate is found for stars hotter than 14\,000 K, but an exact analogy with \omega Cen cannot be drawn. We measured the reddening in the direction of M22 with two independent methods, finding E(B-V)=0.35 \pm 0.02 mag, with semi-amplitude of the maximum variation \Delta(E(B-V))=0.06 mag, and an rms intrinsic dispersion of \sigma(E(B-V))=0.03 mag.Comment: 11 pages, 9 Postscript figure

    Near-infrared photometry of globular clusters towards the Galactic bulge: Observations and photometric metallicity indicators

    Get PDF
    Indexación: Web of Science; Scopus.We present wide-field JHKS photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the Two Micron All-Sky Survey photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature.We find that the magnitude difference between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H], with a precision of better than 0.1 dex in all three near-IR bandpasses for relatively metal-rich ([M/H] ≳ -1) clusters. Meanwhile, both the slope of the upper RGB and the magnitude difference between the RGB tip and bump are useful metallicity indicators over the entire sampled metallicity range (-2 ≲ [M/H] ≲ 0) with a precision of 0.2 dex or better, despite model predictions that the RGB slope may become unreliable at high (near-solar) metallicities. Our results agree with previous calibrations in light of the relevant uncertainties, and we discuss implications for clusters with controversial metallicities as well as directions for further investigation.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw243

    Influence of firing mechanisms on gain modulation

    Full text link
    We studied the impact of a dynamical threshold on the f-I curve-the relationship between the input and the firing rate of a neuron-in the presence of background synaptic inputs. First, we found that, while the leaky integrate-and-fire model cannot reproduce the f-I curve of a cortical neuron, the leaky integrate-and-fire model with dynamical threshold can reproduce it very well. Second, we found that the dynamical threshold modulates the onset and the asymptotic behavior of the f-I curve. These results suggest that a cortical neuron has an adaptation mechanism and that the dynamical threshold has some significance for the computational properties of a neuron.Comment: 7 pages, 4 figures, conference proceeding

    Abundance ratios of red giants in low mass ultra faint dwarf spheroidal galaxies

    Get PDF
    Low mass dwarf spheroidal galaxies are key objects for our understanding of the chemical evolution of the pristine Universe and the Local Group of galaxies. Abundance ratios in stars of these objects can be used to better understand their star formation and chemical evolution. We report on the analysis of a sample of 11 stars belonging to 5 different ultra faint dwarf spheroidal galaxies (UfDSph) based on X-Shooter spectra obtained at the VLT. Medium resolution spectra have been used to determine the detailed chemical composition of their atmosphere. We performed a standard 1D LTE analysis to compute the abundances. Considering all the stars as representative of the same population of low mass galaxies, we found that the [alpha/Fe] ratios vs [Fe/H] decreases as the metallicity of the star increases in a way similar to what is found for the population of stars belonging to dwarf spheroidal galaxies. The main difference is that the solar [alpha/Fe] is reached at a much lower metallicity for the UfDSph than the dwarf spheroidal galaxies. We report for the first time the abundance of strontium in CVnI. The star we analyzed in this galaxy has a very high [Sr/Fe] and a very low upper limit of barium which makes it a star with an exceptionally high [Sr/Ba] ratio. Our results seem to indicate that the galaxies which have produced the bulk of their stars before the reionization (fossil galaxies) have lower [X/Fe] ratios at a given metallicity than the galaxies that have experienced a discontinuity in their star formation rate (quenching).Comment: 22 pages, 12 figures, submitted to A&

    Ca II TRIPLET SPECTROSCOPY OF SMALL MAGELLANIC CLOUD RED GIANTS. IV. ABUNDANCES FOR A LARGE SAMPLE OF FIELD STARS AND COMPARISON WITH THE CLUSTER SAMPLE

    Get PDF
    This paper represents a major step forward in the systematic and homogeneous study of Small Magellanic Cloud (SMC) star clusters and field stars carried out by applying the calcium triplet technique. We present in this work the radial velocity and metallicity of approximately 400 red giant stars in 15 SMC fields, with typical errors of about 7 km s-1 and 0.16 dex, respectively. We added to this information our previously determined metallicity values for 29 clusters and approximately 350 field stars using the identical techniques. Using this enlarged sample, we analyze the metallicity distribution and gradient in this galaxy. We also compare the chemical properties of the clusters and of their surrounding fields. We find a number of surprising results. While the clusters, taken as a whole, show no strong evidence for a metallicity gradient (MG), the field stars exhibit a clear negative gradient in the inner region of the SMC, consistent with the recent results of Dobbie et al. For distances to the center of the galaxy less than 4\ub0, field stars show a considerably smaller metallicity dispersion than that of the clusters. However, in the external SMC regions, clusters and field stars exhibit similar metallicity dispersions. Moreover, in the inner region of the SMC, clusters appear to be concentrated in two groups: one more metal-poor and another more metal-rich than field stars. Individually considered, neither cluster group presents an MG. Most surprisingly, the MG for both stellar populations (clusters and field stars) appears to reverse sign in the outer regions of the SMC. The difference between the cluster metallicity and the mean metallicity of the surrounding field stars turns out to be a strong function of the cluster metallicity. These results could be indicating different chemical evolution histories for these two SMC stellar populations. They could also indicate variations in the chemical behavior of the SMC in its internal and external regions

    Temporal Oscillation of Conductances in Quantum Hall Effect of Bloch Electrons

    Full text link
    We study a nonadiabatic effect on the conductances in the quantum Hall effect of two-dimensional electrons with a periodic potential. We found that the Hall and longitudinal conductances oscillate in time with a very large frequencies due to quantum fluctuation.Comment: 8 pages, 4 figure
    • …
    corecore