905 research outputs found
Relative abundance and size composition of subtidal abalone, Haliotis spp., sea urchin, Strongylocentrotus spp., and abundance of sea stars off Fitzgerald marine reserve, September 1993
Data were collected at twenty-six dive stations at seven discrete latitudes along Fitzgerald Marine Reserve (FMR). Dive stations were targeted at three stratified depth zones: shallow (6.1 m), medium (10.7 m), and deep (16.8 m) in six of the seven locations. Two types of line
transects, emergent and invasive, were completed by separate dive teams at each dive station. The area surveyed totalled 1,510 m2 for emergent and 560 m2 for invasive transects.
Reef habitat dominated all depth zones, with moveable boulder and cobble increasing at medium and shallow depths. Encrusting coraline and surface algae dominated (49%), followed by turf (37%), sub-canopy (11.2%), and rare canopy (0.2%). Canopy was found only at shallow depths. Turf and sub-canopy decreased with depth.
Only two species of abalone, red, Haliotis rufescens, and flat, H. walallensis, were found. Flat abalone were extremely rare with only two found on invasive transects (0.004 abalone m-2). Red abalone densities were low at both emergent (0.02 abalone m-2, s.e.=O.Ol) and
invasive (0.07 abalone m-2, s.e.=0.03 ) transects. Red abalone concentrations differed significantly by depth and location. No abalone were found at deep depths and only one
sport-legal (178 mm shell length) abalone was found at medium depth. One commercial legal (198 mm shell length) abalone was found on the entire survey. Most sport-legal abalone were located in cryptic habitat in shallow invasive transects (38%), compared to 7% on emergent transects. The only evidence of recruitment was found on invasive transects where three young-of-the-year (<=31 mm shell length) red abalone were found. Evidence from our survey and other sources suggests that sport and commercial fisheries are not sustainable off the San Mateo coast.
Red urchin, Stongylocentrotus franciscanus, were more abundant than purple urchin, S. purpuratus, or red abalone. Red urchin densities were lower in emergent (1.08 urchin m-2,s.e.=0.04) than invasive (1.52, s.e.=0.06 m-2) transects. Densities of red urchin at deep stations in areas of lower algal abundance and potentially greater commercial fishing pressure were about one-half the densities at medium and shallow depths. ANOVA showed significant differences by depth and location. Mean Test Diameter (MTD) increased from deep to medium to shallow depths, while juvenile (<=50 mm) MTD showed an inverse
relationship with depth. Shallow-depth invasive transects revealed a missing mode of 83 mm red urchin. This size mode was not found in emergent transects, probably due to cryptic habitat.
Purple urchin were found at low densities at all three depth strata. Purple urchin densities were comparable in emergent (0.11 urchin m-2, s.e.=0.02 ) and invasive (0.09 urchin m-2,s.e.=0.03) transects. ANOVA showed densities varied significantly by location but not depth. 'Juvenile' purple urchin abundance showed an inverse relation to juvenile red urchin, increasing from deep to shallow depths. Purple urchin MTD of 84 mm (s.d.=23) was larger
than reported for intertidal areas off FMR.
Sea stars were found in high abundance off FMR. Bat stars, Asterina minata, had the highest densities (0.79 sea stars m-2, s.e.=0.03) followed by Pisaster sp. (0.47 sea stars m-2,s.e.=0.03 ), and sunflower stars, Pycnopodia helianthoides, (0.11 sea stars m-2, s.e.=0.04).
Pisaster sp. was the only group of sea stars where differences in density were significant by depth or location. (30pp.
Structural and magnetic transition in CeFeAsO: separated or connected?
Using an adapted Sn-flux growth technique we obtained comparatively large
CeFeAsO single crystals of better quality than previously reported polycrystals
or single crystals, as evidenced by much sharper anomalies at the structural
and magnetic phase transitions as well as a much higher residual resistivity
ratio of 12. In the magnetically ordered phase we observe a very pronounced
metallic behavior of the in-plane resistivity, which excludes a Mott insulator
regime at low temperature. The separation Delta_T = T_0 - T_N between
structural and magnetic ordering temperatures decreases with increasing sample
quality, from 18 K in the initial reports to 6 K in the present single
crystals, demonstrating that this separation is not an intrinsic property of
the RFeAsO systems. Our results indicate that the coupling between magnetic
ordering and structural distortion is very similar in AFe2As2 and RFeAsO type
of compounds, much more similar than previously thought. The implications of
our experimental results give arguments both in favor and against the nematic
phase model.Comment: published in PRB with the title 'Coupling between the structural and
magnetic transition in CeFeAsO
Anisotropy, disorder, and superconductivity in CeCu2Si2 under high pressure
Resistivity measurements were carried out up to 8 GPa on single crystal and
polycrystalline samples of CeCu2Si2 from differing sources in the homogeneity
range. The anisotropic response to current direction and small uniaxial
stresses was explored, taking advantage of the quasi-hydrostatic environment of
the Bridgman anvil cell. It was found that both the superconducting transition
temperature Tc and the normal state properties are very sensitive to uniaxial
stress, which leads to a shift of the valence instability pressure Pv and a
small but significant change in Tc for different orientations with respect to
the tetragonal c-axis. Coexistence of superconductivity and residual
resistivity close to the Ioffe-Regel limit around 5 GPa provides a compelling
argument for the existence of a valence-fluctuation mediated pairing
interaction at high pressure in CeCu2Si2.Comment: 12 pages, 7 figure
Exploring the spin-1/2 frustrated square lattice model with high-field magnetization measurements
We report on high-field magnetization measurements for a number of layered
vanadium phosphates that were recently recognized as spin-1/2 frustrated square
lattice compounds with ferromagnetic nearest-neighbor couplings (J_1) and
antiferromagnetic next-nearest-neighbor couplings (J_2). The saturation fields
of the materials lie in the range from 4 to 24 T and show excellent agreement
with the previous estimates of the exchange couplings deduced from low-field
thermodynamic measurements. The consistency of the high-field data with the
regular frustrated square lattice model provides experimental evidence for a
weak impact of spatial anisotropy on the nearest-neighbor couplings in layered
vanadium phosphates. The variation of the J_2/J_1 ratio within the compound
family facilitates the experimental access to the evolution of the
magnetization curve upon the change of the frustration magnitude. Our results
support the recent theoretical prediction by Thalmeier et al. [Phys. Rev. B,
77, 104441 (2008)] and give evidence for the enhanced bending of the
magnetization curves due to the increasing frustration of the underlying spin
system.Comment: Brief Report: 4 pages, 3 figures, 1 tabl
Avoided ferromagnetic quantum critical point in CeRuPO
CeRuPO is a rare example of a ferromagnetic (FM) Kondo-lattice system.
External pressure suppresses the ordering temperature to zero at about
GPa. Our ac-susceptibility and electrical-resistivity
investigations evidence that the type of magnetic ordering changes from FM to
antiferromagnetic (AFM) at about GPa. Studies in applied
magnetic fields suggest that ferromagnetic and antiferromagnetic correlations
compete for the ground state at , but finally the AFM correlations win.
The change in the magnetic ground-state properties is closely related to the
pressure evolution of the crystalline-electric-field level (CEF) scheme and the
magnetic Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. The
N\'{e}el temperature disappears abruptly in a first-order-like fashion at
, hinting at the absence of a quantum critical point. This is consistent
with the low-temperature transport properties exhibiting Landau-Fermi-liquid
(LFL) behavior in the whole investigated pressure range up to 7.5 GPa.Comment: 12 figure
Self-supervised automated wrapper generation for weblog data extraction
Data extraction from the web is notoriously hard. Of the types of resources available on the web, weblogs are becoming increasingly important due to the continued growth of the blogosphere, but remain poorly explored. Past approaches to data extraction from weblogs have often involved manual intervention and suffer from low scalability. This paper proposes a fully automated information extraction methodology based on the use of web feeds and processing of HTML. The approach includes a model for generating a wrapper that exploits web feeds for deriving a set of extraction rules automatically. Instead of performing a pairwise comparison between posts, the model matches the values of the web feeds against their corresponding HTML elements retrieved from multiple weblog posts. It adopts a probabilistic approach for deriving a set of rules and automating the process of wrapper generation. An evaluation of the model is conducted on a dataset of 2,393 posts and the results (92% accuracy) show that the proposed technique enables robust extraction of weblog properties and can be applied across the blogosphere for applications such as improved information retrieval and more robust web preservation initiatives
Temperature- and Magnetic-Field-Dependent Optical Properties of Heavy Quasiparticles in YbIr2Si2
We report the temperature- and magnetic-field-dependent optical conductivity
spectra of the heavy electron metal YbIrSi. Upon cooling below the
Kondo temperature (), we observed a typical charge dynamics that is
expected for a formation of a coherent heavy quasiparticle state. We obtained a
good fitting of the Drude weight of the heavy quasiparticles by applying a
modified Drude formula with a photon energy dependence of the quasiparticle
scattering rate that shows a similar power-law behavior as the temperature
dependence of the electrical resistivity. By applying a magnetic field of 6T
below , we found a weakening of the effective dynamical mass
enhancement by about 12% in agreement with the expected decrease of the
-conduction electron hybridization on magnetic field.Comment: 5 pages, 4 figures. to be published in Journal of the Physical
Society of Japan Vol. 79 (2010) No. 1
Far-infrared optical conductivity of CeCu2Si2
Journal ref.: J. Phys.: Condens. Matter 25, 065602 (2013): We investigated
the optical reflectivity of the heavy-fermion metal CeCu2Si2 in the energy
range 3 meV - 30 eV for temperatures between 4K - 300K. The results for the
charge dynamics indicate a behavior that is expected for the formation of a
coherent heavy quasiparticle state: Upon cooling the spectra of the optical
conductivity indicate a narrowing of the coherent response. Below temperatures
of 30 K a considerable suppression of conductivity evolves below a peak
structure at 13 meV. We assign this gap-like feature to strong electron
correlations due to the 4f-conduction electron hybridization.Comment: 7 pages, 3 figure
Frustrated square lattice with spatial anisotropy: crystal structure and magnetic properties of PbZnVO(PO4)2
Crystal structure and magnetic properties of the layered vanadium phosphate
PbZnVO(PO4)2 are studied using x-ray powder diffraction, magnetization and
specific heat measurements, as well as band structure calculations. The
compound resembles AA'VO(PO4)2 vanadium phosphates and fits to the extended
frustrated square lattice model with the couplings J(1), J(1)' between
nearest-neighbors and J(2), J(2)' between next-nearest-neighbors. The
temperature dependence of the magnetization yields estimates of averaged
nearest-neighbor and next-nearest-neighbor couplings, J(1) ~ -5.2 K and J(2) ~
10.0 K, respectively. The effective frustration ratio alpha=J(2)/J(1) amounts
to -1.9 and suggests columnar antiferromagnetic ordering in PbZnVO(PO4)2.
Specific heat data support the estimates of J(1) and J(2) and indicate a likely
magnetic ordering transition at 3.9 K. However, the averaged couplings
underestimate the saturation field, thus pointing to the spatial anisotropy of
the nearest-neighbor interactions. Band structure calculations confirm the
identification of ferromagnetic J(1), J(1)' and antiferromagnetic J(2), J(2)'
in PbZnVO(PO4)2 and yield J(1)'-J(1) ~ 1.1 K in excellent agreement with the
experimental value of 1.1 K, deduced from the difference between the expected
and experimentally measured saturation fields. Based on the comparison of
layered vanadium phosphates with different metal cations, we show that a
moderate spatial anisotropy of the frustrated square lattice has minor
influence on the thermodynamic properties of the model. We discuss relevant
geometrical parameters, controlling the exchange interactions in these
compounds, and propose a new route towards strongly frustrated square lattice
materials.Comment: 14 pages, 9 figures, 5 table
- …