502 research outputs found
Conformal off-diagonal boundary density profiles on a semi-infinite strip
The off-diagonal profile phi(v) associated with a local operator (order
parameter or energy density) close to the boundary of a semi-infinite strip
with width L is obtained at criticality using conformal methods. It involves
the surface exponent x_phi^s and displays a simple universal behaviour which
crosses over from surface finite-size scaling when v/L is held constant to
corner finite-size scaling when v/L -> 0.Comment: 5 pages, 1 figure, IOP macros and eps
Ashkin-Teller universality in a quantum double model of Ising anyons
We study a quantum double model whose degrees of freedom are Ising anyons.
The terms of the Hamiltonian of this system give rise to a competition between
single and double topologies. By studying the energy spectra of the Hamiltonian
at different values of the coupling constants, we find extended gapless regions
which include a large number of critical points described by conformal field
theories with central charge c=1. These theories are part of the Z_2 orbifold
of the bosonic theory compactified on a circle. We observe that the Hilbert
space of our anyonic model can be associated with extended Dynkin diagrams of
affine Lie algebras which yields exact solutions at some critical points. In
certain special regimes, our model corresponds to the Hamiltonian limit of the
Ashkin-Teller model, and hence integrability over a wide range of coupling
parameters is established.Comment: 11 pages, minor revision
Numerical study of the critical behavior of the Ashkin-Teller model at a line defect
We consider the Ashkin-Teller model on the square lattice, which is
represented by two Ising models ( and ) having a four-spin
coupling of strength, , between them. We introduce an asymmetric
defect line in the system along which the couplings in the Ising model
are modified. In the Hamiltonian version of the model we study the scaling
behavior of the critical magnetization at the defect, both for and for
spins by density matrix renormalization. For we observe
identical scaling for and spins, whereas for one
model becomes locally ordered and the other locally disordered. This is
different of the critical behavior of the uncoupled model () and is
in contradiction with the results of recent field-theoretical calculations.Comment: 6 pages, 4 figure
Marginal Extended Perturbations in Two Dimensions and Gap-Exponent Relations
The most general form of a marginal extended perturbation in a
two-dimensional system is deduced from scaling considerations. It includes as
particular cases extended perturbations decaying either from a surface, a line
or a point for which exact results have been previously obtained. The
first-order corrections to the local exponents, which are functions of the
amplitude of the defect, are deduced from a perturbation expansion of the
two-point correlation functions. Assuming covariance under conformal
transformation, the perturbed system is mapped onto a cylinder. Working in the
Hamiltonian limit, the first-order corrections to the lowest gaps are
calculated for the Ising model. The results confirm the validity of the
gap-exponent relations for the perturbed system.Comment: 11 pages, Plain TeX, eps
Finite-size scaling corrections in two-dimensional Ising and Potts ferromagnets
Finite-size corrections to scaling of critical correlation lengths and free
energies of Ising and three-state Potts ferromagnets are analysed by numerical
methods, on strips of width sites of square, triangular and honeycomb
lattices. Strong evidence is given that the amplitudes of the ``analytical''
correction terms, , are identically zero for triangular-- and honeycomb
Ising systems. For Potts spins, our results are broadly consistent with this
lattice-dependent pattern of cancellations, though for correlation lengths
non-vanishing (albeit rather small) amplitudes cannot be entirely ruled out.Comment: 11 pages, LaTeX with Institute of Physics macros, 2 EPS figures; to
appear in Journal of Physics
sl(N) Onsager's Algebra and Integrability
We define an analog of Onsager's Algebra through a finite set of
relations that generalize the Dolan Grady defining relations for the original
Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be
isomorphic to a fixed point subalgebra of Loop Algebra with respect
to a certain involution. As the consequence of the generalized Dolan Grady
relations a Hamiltonian linear in the generators of Onsager's Algebra
is shown to posses an infinite number of mutually commuting integrals of
motion
Universal ratios of critical amplitudes in the Potts model universality class
Monte Carlo (MC) simulations and series expansions (SE) data for the energy,
specific heat, magnetization, and susceptibility of the three-state and
four-state Potts model and Baxter-Wu model on the square lattice are analyzed
in the vicinity of the critical point in order to estimate universal
combinations of critical amplitudes. We also form effective ratios of the
observables close to the critical point and analyze how they approach the
universal critical-amplitude ratios. In particular, using the duality relation,
we show analytically that for the Potts model with a number of states ,
the effective ratio of the energy critical amplitudes always approaches unity
linearly with respect to the reduced temperature. This fact leads to the
prediction of relations among the amplitudes of correction-to-scaling terms of
the specific heat in the low- and high-temperature phases. It is a common
belief that the four-state Potts and the Baxter-Wu model belong to the same
universality class. At the same time, the critical behavior of the four-state
Potts model is modified by logarithmic corrections while that of the Baxter-Wu
model is not. Numerical analysis shows that critical amplitude ratios are very
close for both models and, therefore, gives support to the hypothesis that the
critical behavior of both systems is described by the same renormalization
group fixed point.Comment: Talk presented at CCP 2008, Ouro Preto, 5-9 August 200
Robots and cyborgs: to be or to have a body?
Starting with service robotics and industrial robotics, this paper aims to suggest philosophical reflections about the relationship between body and machine, between man and technology in our contemporary world. From the massive use of the cell phone to the robots which apparently “feel” and show emotions like humans do. From the wearable exoskeleton to the prototype reproducing the artificial sense of touch, technological progress explodes to the extent of embodying itself in our nakedness. Robotics, indeed, is inspired by biology in order to develop a new kind of technology affecting human life. This is a bio-robotic approach, which is fulfilled in the figure of the cyborg and consequently in the loss of human nature. Today, humans have reached the possibility to modify and create their own body following their personal desires. But what is the limit of this achievement? For this reason, we all must question ourselves whether we have or whether we are a body
Programas governamentais de aquisição de alimentos da agricultura familiar no Estado do Tocantins.
Este artigo objetiva discutir o acesso dos agricultores familiares aos mercados institucionais no Estado do Tocantins, no período de 2011 a 2015. Com base em dados secundários e em revisão de literatura, focou-se na discussão sobre o usufruto de políticas públicas como prerrogativas constituídas legalmente sob a perspectiva de Dahnrendorf (1992). Os dados mostram que, no Tocantins, o acesso dos agricultores familiares ao Programa de Aquisição de Alimentos oscilou, tendo sido maior no ano de 2014. Em relação ao acesso ao Programa Nacional de Alimentação Escolar, entre 2011 e 2014, houve crescimento gradativo de 93% no valor comprado pelas prefeituras municipais. Entretanto, o percentual médio comprado não atingiu o mínimo de 30% do valor repassado pelo Fundo Nacional de Desenvolvimento da Educação. Constatou-se que a minoria dos agricultores teve acesso aos mercados institucionais. Diversos gargalos referentes à legislação, organização produtiva, falta de estruturas mínimas de processamento de produtos e deficitária ou inexistente assistência técnica tem dificultado esse acesso. Apesar desse resultado, ressalta-se que os programas de aquisição de alimentos têm efeitos positivos nas dinâmicas locais, principalmente no que concerne à organização formal dos agricultores familiares. Trabalhos sobre essa temática em outros estados mostram que mesmo o número de agricultores beneficiários desses programas seja menor que o esperado, o acesso dos agricultores familiares às políticas de fornecimento de produtos alimentícios, além de outras políticas agrícolas e sociais, ampliou a possibilidade do exercício da cidadania ao valorizar o modo de vida das múltiplas agriculturas e o sentimento de pertencimento do grupo
Irrelevant operators in the two-dimensional Ising model
By using conformal-field theory, we classify the possible irrelevant
operators for the Ising model on the square and triangular lattices. We analyze
the existing results for the free energy and its derivatives and for the
correlation length, showing that they are in agreement with the conformal-field
theory predictions. Moreover, these results imply that the nonlinear scaling
field of the energy-momentum tensor vanishes at the critical point. Several
other peculiar cancellations are explained in terms of a number of general
conjectures. We show that all existing results on the square and triangular
lattice are consistent with the assumption that only nonzero spin operators are
present.Comment: 32 pages. Added comments and reference
- …