6,904 research outputs found

    Aviation and Tourism: The Traveling Public

    Get PDF

    CDSE Quantum Dot Surface Chemistry Thermodynamics via Isothermal Titration Calorimetry: An Emphasis on the Fundamentals

    Get PDF
    For several decades, the study and development of colloidal semiconductor nanocrystals, or quantum dots (QD), has become a rich field heralding improved integration into applications ranging from photovoltaics and photocatalysis to biomedical imaging and drug delivery. CdxSey is the most extensively studied QD system, however numerous compositional details still confound the nanocrystal field. Although CdSe QDs with native ligand coatings can show high fluorescence quantum yield and may be suitable for some applications, often times these original ligand layers are comprised of long aliphatic chains that preclude incorporation into biological matrices or severely impede charge transfer – depending on the end goal functionality. While the innermost core can be highly crystalline, due to the QD size regime a large fraction of the constituent atoms is found at the surface; the nature of which strongly influences optoelectronic properties. Indeed, the necessary ligand surfactant layer is anything but innocuous; dictating synthetic morphology, determining solubility, quenching or enhancing photoluminescence, or even modulating the nanocrystal’s band gap. A detailed, consistent and unambiguous profile for QD surface composition and thermodynamics would be extremely advantageous toward controlling and improving photophysical properties. This dissertation highlights several caveats for appropriately compiling a thermodynamic profile in situ for the dynamic nature of QD surfaces, and to describe approaches to address them. I have focused on developing commonly employed metrics for investigating CdSe QD surface chemistries. I begin by thoroughly considering how various purification techniques alter the most significant aspects of QD investigations and performance. Among these, I illustrate the gel permeation chromatography (GPC) approach that I helped to establish as a highly effective technique for nanoparticle purification. Finally, I delineate in several fundamental CdSe-based QD systems the capacity of isothermal titration calorimetry as a sensitive and precisely quantitative technique to directly probe reaction thermodynamics in organic phase. Even in cases where common spectroscopic techniques have been of limited use, ITC is employed to elucidate complex binding phenomena. Beginning with the highly reproducible GPC purification technique for a consistent QD starting material, this dissertation depicts my efforts to provide consistent equilibrium thermodynamic data for relevant QD surface chemistry interactions

    Free-standing graphene films embedded in epoxy resin with enhanced thermal properties

    Get PDF
    The poor thermal conductivity of polymer composites has long been a deterrent to their increased use in high-end aerospace or defence applications. This study describes a new approach for the incorporation of graphene in an epoxy resin, through the addition of graphene as free-standing film in the polymeric matrix. The electrical and thermal conductivity of composites embedding two different free-standing graphene films was compared to composites with embedded carbon nanotube buckypapers (CNT-BP). Considerably higher thermal conductivity values than those achieved with conventional dispersing methods of graphene or CNTs in epoxy resins were obtained. The characterisation was complemented with a study of the structure at the microscale by cross-sectional scanning electron microscopy (SEM) images and a thermogravimetric analysis (TGA). The films are preconditioned in order to incorporate them into the composites, and the complete manufacturing process proposed allows the production and processing of these materials in large batches. The high thermal conductivity obtained for the composites opens the way for their use in demanding thermal management applications, such as electronic enclosures or platforms facing critical temperature loads.European Defence Agency tender No 17.ESI.OP.066. Study on the Impact of Graphene on Defence Application

    Parental cultural models and resources for understanding mathematical achievement in culturally diverse school settings

    Get PDF
    This paper proposes that the theoretical concept of cultural models can offer useful insights into parental involvement in their child’s mathematical achievement and the resources they use to go about gaining information in culturally diverse learning settings. This examination takes place within a cultural-developmental framework and draws on the notion of cultural models to explicate parental understandings of their child’s mathematics achievement and what resources are used to make sense of this. Three parental resources are scrutinized: (a) the teacher, (b) examination test results, and (c) constructions of child development. The interviews with 22 parents revealed some ambiguity around the interpretation of these resources by the parent, which was often the result of incongruent cultural models held between the home and the school. The resources mentioned are often perceived as being unambiguous but show themselves instead to be highly interpretive because of the diversity of cultural models in existence in culturally diverse settings. Parents who are in minority or marginalized positions tend to have difficulties in interpreting cultural models held by school, thereby disempowering them to be parentally involved in the way the school would like

    Comparison of 35 and 50 {\mu}m thin HPK UFSD after neutron irradiation up to 6*10^15 neq/cm^2

    Full text link
    We report results from the testing of 35 {\mu}m thick Ultra-Fast Silicon Detectors (UFSD produced by Hamamatsu Photonics (HPK), Japan and the comparison of these new results to data reported before on 50 {\mu}m thick UFSD produced by HPK. The 35 {\mu}m thick sensors were irradiated with neutrons to fluences of 0, 1*10^14, 1*10^15, 3*10^15, 6*10^15 neq/cm^2. The sensors were tested pre-irradiation and post-irradiation with minimum ionizing particles (MIPs) from a 90Sr \b{eta}-source. The leakage current, capacitance, internal gain and the timing resolution were measured as a function of bias voltage at -20C and -27C. The timing resolution was extracted from the time difference with a second calibrated UFSD in coincidence, using the constant fraction method for both. Within the fluence range measured, the advantage of the 35 {\mu}m thick UFSD in timing accuracy, bias voltage and power can be established.Comment: 9 pages, 9 figures, HSTD11 Okinawa. arXiv admin note: text overlap with arXiv:1707.0496

    3D virtual worlds as environments for literacy learning

    Get PDF
    Background: Although much has been written about the ways in which new technology might transform educational practice, particularly in the area of literacy learning, there is relatively little empirical work that explores the possibilities and problems - or even what such a transformation might look like in the classroom. 3D virtual worlds offer a range of opportunities for children to use digital literacies in school, and suggest one way in which we might explore changing literacy practices in a playful, yet meaningful context. Purpose: This paper identifies some of the key issues that emerged in designing and implementing virtual world work in a small number of primary schools in the UK. It examines the tensions between different discourses about literacy and literacy learning and shows how these were played out by teachers and pupils in classroom settings.Sources of evidence: Case study data are used as a basis for exploring and illustrating key aspects of design and implementation. The case study material includes views from a number of perspectives including classroom observations, chatlogs, in-world avatar interviews with teachers and also pupils, as well as the author’s field notes of the planning process with accompanying minutes and meeting documents.Main argument: From a Foucauldian perspective, the article suggests that social control of pedagogical practice through the regulation of curriculum time, the normalisation of teaching routines and the regimes of individual assessment restricts teachers’ and pupils’ conceptions of what constitutes literacy. The counternarrative, found in recent work in new litearcies (Lankshear & Knobel, 2006) provides an attractive alternative, but a movement in this direction requires a fundamental shift of emphasis and a re-conceptualisation of what counts as learning.Conclusions: This work on 3D virtual worlds questions the notion of how transformative practice can be achieved with the use of new technologies. It suggests that changes in teacher preparation, continuing professional development as well as wider educational reform may be needed

    Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations

    Full text link
    During the last decade, lattice-Boltzmann (LB) simulations have been improved to become an efficient tool for determining the permeability of porous media samples. However, well known improvements of the original algorithm are often not implemented. These include for example multirelaxation time schemes or improved boundary conditions, as well as different possibilities to impose a pressure gradient. This paper shows that a significant difference of the calculated permeabilities can be found unless one uses a carefully selected setup. We present a detailed discussion of possible simulation setups and quantitative studies of the influence of simulation parameters. We illustrate our results by applying the algorithm to a Fontainebleau sandstone and by comparing our benchmark studies to other numerical permeability measurements in the literature.Comment: 14 pages, 11 figure

    Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy - Observation of a candidate promoting vibration

    Get PDF
    We have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~1.2ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~84, 116, 189, and 226cm(-1). Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226cm(-1) band is assigned as a potential 'promoting vibration' in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group

    Recognising facial expressions in video sequences

    Full text link
    We introduce a system that processes a sequence of images of a front-facing human face and recognises a set of facial expressions. We use an efficient appearance-based face tracker to locate the face in the image sequence and estimate the deformation of its non-rigid components. The tracker works in real-time. It is robust to strong illumination changes and factors out changes in appearance caused by illumination from changes due to face deformation. We adopt a model-based approach for facial expression recognition. In our model, an image of a face is represented by a point in a deformation space. The variability of the classes of images associated to facial expressions are represented by a set of samples which model a low-dimensional manifold in the space of deformations. We introduce a probabilistic procedure based on a nearest-neighbour approach to combine the information provided by the incoming image sequence with the prior information stored in the expression manifold in order to compute a posterior probability associated to a facial expression. In the experiments conducted we show that this system is able to work in an unconstrained environment with strong changes in illumination and face location. It achieves an 89\% recognition rate in a set of 333 sequences from the Cohn-Kanade data base

    Endogenous fantasy and learning in digital games.

    Get PDF
    Many people believe that educational games are effective because they motivate children to actively engage in a learning activity as part of playing the game. However, seminal work by Malone (1981), exploring the motivational aspects of digital games, concluded that the educational effectiveness of a digital game depends on the way in which learning content is integrated into the fantasy context of the game. In particular, he claimed that content which is intrinsically related to the fantasy will produce better learning than that which is merely extrinsically related. However, this distinction between intrinsic and extrinsic (or endogenous and exogenous) fantasy is a concept that has developed a confused standing over the following years. This paper will address this confusion by providing a review and critique of the empirical and theoretical foundations of endogenous fantasy, and its relevance to creating educational digital games. Substantial concerns are raised about the empirical basis of this work and a theoretical critique of endogenous fantasy is offered, concluding that endogenous fantasy is a misnomer, in so far as the "integral and continuing relationship" of fantasy cannot be justified as a critical means of improving the effectiveness of educational digital games. An alternative perspective on the intrinsic integration of learning content is described, incorporating game mechanics, flow and representations
    corecore