8,615 research outputs found

    Chemical reactivity of hydrogen, nitrogen and oxygen atoms at temperatures below 100 deg K Fifth semiannual technical report

    Get PDF
    Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 deg

    Reproducibility of graph metrics of human brain structural networks

    Get PDF
    Recent interest in human brain connectivity has led to the application of graph theoretical analysis to human brain structural networks, in particular white matter connectivity inferred from diffusion imaging and fiber tractography. While these methods have been used to study a variety of patient populations, there has been less examination of the reproducibility of these methods. A number of tractography algorithms exist and many of these are known to be sensitive to user-selected parameters. The methods used to derive a connectivity matrix from fiber tractography output may also influence the resulting graph metrics. Here we examine how these algorithm and parameter choices influence the reproducibility of proposed graph metrics on a publicly available test-retest dataset consisting of 21 healthy adults. The dice coefficient is used to examine topological similarity of constant density subgraphs both within and between subjects. Seven graph metrics are examined here: mean clustering coefficient, characteristic path length, largest connected component size, assortativity, global efficiency, local efficiency, and rich club coefficient. These reproducibility of these network summary measures is examined using the intraclass correlation coefficient (ICC). Graph curves are created by treating the graph metrics as functions of a parameter such as graph density. Functional data analysis techniques are usedto examine differences in graph measures that result from the choice of fiber tracking algorithm. The graph metrics consistently showed good levels of reproducibility as measured with ICC, with the exception of some instability at low graph density levels. The global and local efficiency measures were the most robust to the choice of fiber tracking algorithm

    Probing the Relation Between X-ray-Derived and Weak-Lensing-Derived Masses for Shear-Selected Galaxy Clusters: I. A781

    Full text link
    We compare X-ray and weak-lensing masses for four galaxy clusters that comprise the top-ranked shear-selected cluster system in the Deep Lens Survey. The weak-lensing observations of this system, which is associated with A781, are from the Kitt Peak Mayall 4-m telescope, and the X-ray observations are from both Chandra and XMM-Newton. For a faithful comparison of masses, we adopt the same matter density profile for each method, which we choose to be an NFW profile. Since neither the X-ray nor weak-lensing data are deep enough to well constrain both the NFW scale radius and central density, we estimate the scale radius using a fitting function for the concentration derived from cosmological hydrodynamic simulations and an X-ray estimate of the mass assuming isothermality. We keep this scale radius in common for both X-ray and weak-lensing profiles, and fit for the central density, which scales linearly with mass. We find that for three of these clusters, there is agreement between X-ray and weak-lensing NFW central densities, and thus masses. For the other cluster, the X-ray central density is higher than that from weak-lensing by 2 sigma. X-ray images suggest that this cluster may be undergoing a merger with a smaller cluster. This work serves as an additional step towards understanding the possible biases in X-ray and weak-lensing cluster mass estimation methods. Such understanding is vital to efforts to constrain cosmology using X-ray or weak-lensing cluster surveys to trace the growth of structure over cosmic time.Comment: 14 pages, 7 figures, matches version in Ap

    Knowledge of and Adherence to Health Advice among Adults with Diabetes in Libya

    Get PDF
    Background: Non-adherence to medical and health care advice is a common problem, though reasons for non-adherence can differ across different groups and societies as well as between individuals. Objective: to examine diabetes knowledge among people with both type1 and type2 diabetes in Libya and explore any other factors that enhance adherence to treatment and management of the condition. Methods: A cross-sectional survey design was used to collect data from adults with type1 or type2 diabetes who have been diagnosed for 12 months or more, in Benghazi Diabetes Centre, which is one of the oldest and largest diabetes registries in Libya. A total of 855 participants were asked to fill in two questionnaires; the Michigan Diabetes Knowledge Test to investigate the level of diabetes knowledge and the Confidence in diabetes Self-care Scale to assess self-efficacy. For the purpose of the study descriptive statistics and inferential statistical tests were conducted. Results: Diabetes knowledge is very poor especially among females and those classed as illiterate within the sample. The Mean HbA1c of 9.39 was higher than the recommended levels. Four variables namely knowledge about diabetes, duration of illness, family history and self-efficacy significantly predicted levels of HBA1c. Conclusion: Based on the above findings two different programmes of diabetes education would be recommended. The first programme of education would focus primarily on those with inadequate levels of knowledge about diabetes, particularly female and people with long duration diabetes. The second programme would be for both healthcare professionals and people with type 1 and type2 diabetes, which would consider the psychological factors that are involved in the process of diabetes management

    Reading Videogames as (authorless) Literature

    Get PDF
    This article presents the outcomes of research, funded by the Arts and Humanities Research Council in England and informed by work in the fields of new literacy research, gaming studies and the socio-cultural framing of education, for which the videogame L.A. Noire (Rockstar Games, 2011) was studied within the orthodox framing of the English Literature curriculum at A Level (pre-University) and Undergraduate (degree level). There is a plethora of published research into the kinds of literacy practices evident in videogame play, virtual world engagement and related forms of digital reading and writing (Gee, 2003; Juul, 2005; Merchant, Gillen, Marsh and Davies, 2012; Apperley and Walsh, 2012; Bazalgette and Buckingham, 2012) as well as the implications of such for home / school learning (Dowdall, 2006; Jenkins, 2006; Potter, 2012) and for teachers’ own digital lives (Graham, 2012). Such studies have tended to focus on younger children and this research is also distinct from such work in the field in its exploration of the potential for certain kinds of videogame to be understood as 'digital transformations' of conventional ‘schooled’ literature. The outcomes of this project raise implications of such a conception for a further implementation of a ‘reframed’ literacy (Marsh, 2007) within the contemporary curriculum of a traditional and conservative ‘subject’. A mixed methods approach was adopted. Firstly, students contributing to a gamplay blog requiring them to discuss their in-game experience through the ‘language game’ of English Literature, culminating in answering a question constructed with the idioms of the subject’s set text ‘final examination’. Secondly, students taught their teachers to play L.A. Noire, with free choice over the context for this collaboration. Thirdly, participants returned to traditional roles in order to work through a set of study materials provided, designed to reproduce the conventions of the ‘study guide’ for literature education. Interviews were conducted after each phase and the outcomes informed a redrafting of the study materials which are now available online for teachers – this being the ‘practical’ outcome of the research (Berger and McDougall, 2012). In the act of inserting the study of L.A. Noire into the English Literature curriculum as currently framed, this research moves, through a practical ‘implementation’ beyond longstanding debates around narratology and ludology (Frasca, 2003; Juul, 2005) in the field of game studies (Leaning, 2012) through a direct connection to new literacy studies and raises epistemological questions about ‘subject identity’, informed by Bernstein (1996) and Bourdieu (1986) and the implications for digital transformations of texts for both ideas about cultural value in schooled literacy (Kendall and McDougall, 2011) and the politics of ‘expertise’ in pedagogic relations (Ranciere, 2009, Bennett, Kendall and McDougall, 2012a)

    Risk, precaution and science: towards a more constructive policy debate. Talking point on the precautionary principle

    Get PDF
    Few issues in contemporary risk policy are as momentous or contentious as the precautionary principle. Since it first emerged in German environmental policy, it has been championed by environmentalists and consumer protection groups, and resisted by the industries they oppose (Raffensperger & Tickner, 1999). Various versions of the principle now proliferate across different national and international jurisdictions and policy areas (Fisher, 2002). From a guiding theme in European Commission (EC) environmental policy, it has become a general principle of EC law (CEC, 2000; Vos & Wendler, 2006). Its influence has extended from the regulation of environmental, technological and health risks to the wider governance of science, innovation and trade (O'Riordan & Cameron, 1994)

    Yes-Associated Protein 65 (YAP) Expands Neural Progenitors and Regulates Pax3 Expression in the Neural Plate Border Zone

    Get PDF
    Yes-associated protein 65 (YAP) contains multiple protein-protein interaction domains and functions as both a transcriptional co-activator and as a scaffolding protein. Mouse embryos lacking YAP did not survive past embryonic day 8.5 and showed signs of defective yolk sac vasculogenesis, chorioallantoic fusion, and anterior-posterior (A-P) axis elongation. Given that the YAP knockout mouse defects might be due in part to nutritional deficiencies, we sought to better characterize a role for YAP during early development using embryos that develop externally. YAP morpholino (MO)-mediated loss-of-function in both frog and fish resulted in incomplete epiboly at gastrulation and impaired axis formation, similar to the mouse phenotype. In frog, germ layer specific genes were expressed, but they were temporally delayed. YAP MO-mediated partial knockdown in frog allowed a shortened axis to form. YAP gain-of-function in Xenopus expanded the progenitor populations in the neural plate (sox2+) and neural plate border zone (pax3+), while inhibiting the expression of later markers of tissues derived from the neural plate border zone (neural crest, pre-placodal ectoderm, hatching gland), as well as epidermis and somitic muscle. YAP directly regulates pax3 expression via association with TEAD1 (N-TEF) at a highly conserved, previously undescribed, TEAD-binding site within the 5′ regulatory region of pax3. Structure/function analyses revealed that the PDZ-binding motif of YAP contributes to the inhibition of epidermal and somitic muscle differentiation, but a complete, intact YAP protein is required for expansion of the neural plate and neural plate border zone progenitor pools. These results provide a thorough analysis of YAP mediated gene expression changes in loss- and gain-of-function experiments. Furthermore, this is the first report to use YAP structure-function analyzes to determine which portion of YAP is involved in specific gene expression changes and the first to show direct in vivo evidence of YAP's role in regulating pax3 neural crest expression

    Parental cultural models and resources for understanding mathematical achievement in culturally diverse school settings

    Get PDF
    This paper proposes that the theoretical concept of cultural models can offer useful insights into parental involvement in their child’s mathematical achievement and the resources they use to go about gaining information in culturally diverse learning settings. This examination takes place within a cultural-developmental framework and draws on the notion of cultural models to explicate parental understandings of their child’s mathematics achievement and what resources are used to make sense of this. Three parental resources are scrutinized: (a) the teacher, (b) examination test results, and (c) constructions of child development. The interviews with 22 parents revealed some ambiguity around the interpretation of these resources by the parent, which was often the result of incongruent cultural models held between the home and the school. The resources mentioned are often perceived as being unambiguous but show themselves instead to be highly interpretive because of the diversity of cultural models in existence in culturally diverse settings. Parents who are in minority or marginalized positions tend to have difficulties in interpreting cultural models held by school, thereby disempowering them to be parentally involved in the way the school would like

    Surface states and their possible role in the superconductivity of MgB2

    Full text link
    We report layer-Korringa-Kohn-Rostocker calculations for bulk and surface states as well as the corresponding angle resolved photoemission (ARPES) intensities of MgB2. Our theoretical results reproduce very well the recent ARPES data by Uchiyama et al., cond-mat/0111152. At least two surface states are assigned. Consequences of SFS on the anisotropy of the upper critical fields and other properties in the superconducting state of small grains in micropowder samples are briefly discussed.Comment: 4pages, 6figures, corrected typos, references adde

    Beyond deficit-based models of learners' cognition: Interpreting engineering students' difficulties with sense-making in terms of fine-grained epistemological and conceptual dynamics

    Full text link
    Researchers have argued against deficit-based explanations of students' troubles with mathematical sense-making, pointing instead to factors such as epistemology: students' beliefs about knowledge and learning can hinder them from activating and integrating productive knowledge they have. In this case study of an engineering major solving problems (about content from his introductory physics course) during a clinical interview, we show that "Jim" has all the mathematical and conceptual knowledge he would need to solve a hydrostatic pressure problem that we posed to him. But he reaches and sticks with an incorrect answer that violates common sense. We argue that his lack of mathematical sense-making-specifically, translating and reconciling between mathematical and everyday/common-sense reasoning-stems in part from his epistemological views, i.e., his views about the nature of knowledge and learning. He regards mathematical equations as much more trustworthy than everyday reasoning, and he does not view mathematical equations as expressing meaning that tractably connects to common sense. For these reasons, he does not view reconciling between common sense and mathematical formalism as either necessary or plausible to accomplish. We, however, avoid a potential "deficit trap"-substituting an epistemological deficit for a concepts/skills deficit-by incorporating multiple, context-dependent epistemological stances into Jim's cognitive dynamics. We argue that Jim's epistemological stance contains productive seeds that instructors could build upon to support Jim's mathematical sense-making: He does see common-sense as connected to formalism (though not always tractably so) and in some circumstances this connection is both salient and valued.Comment: Submitted to the Journal of Engineering Educatio
    corecore