119 research outputs found

    Detection of orbital and superhump periods in Nova V2574 Ophiuchi (2004)

    Full text link
    We present the results of 37 nights of CCD unfiltered photometry of nova V2574 Oph (2004) from 2004 and 2005. We find two periods of 0.14164 d (~3.40 h) and 0.14773 d (~3.55 h) in the 2005 data. The 2004 data show variability on a similar timescale, but no coherent periodicity was found. We suggest that the longer periodicity is the orbital period of the underlying binary system and that the shorter period represents a negative superhump. The 3.40 h period is about 4% shorter than the orbital period and obeys the relation between superhump period deficit and binary period. The detection of superhumps in the light curve is evidence of the presence of a precessing accretion disk in this binary system shortly after the nova outburst. From the maximum magnitude - rate of decline relation, we estimate the decay rate t_2 = 17+/-4 d and a maximum absolute visual magnitude of M_Vmax = -7.7+/-1.7 mag.Comment: 6 pages, 6 figures, 2 .sty files, AJ accepted, minor change to one of reference

    Time-Resolved HST Spectroscopy of Four Eclipsing Magnetic Cataclysmic Variables

    Get PDF
    Time-resolved HST UV eclipse spectrophotometry is presented for the magnetic CVs V1309 Ori, MN Hya, V2301 Oph, and V1432 Aql. Separation of the light curves into wavebands allows the multiple emission components to be distinguished. Photospheric hot spots are detected in V1309 Ori and V2301 Oph. The emission- line spectra of V1309 Ori and MN Hya are unusual, with the strength of N V 1240 and N IV 1718 suggesting an overabundance of nitrogen. Three epochs of observation of the asynchronous V1432 Aql cover ~1/3 of a 50-day lap cycle between the white dwarf spin and binary orbit. The light curves vary from epoch to epoch and as a function of waveband. The dereddened UV spectrum is extremely bright and the spectral energy distribution coupled with the duration of eclipse ingress indicate that the dominant source of energy is a hot (T~35,000K) white dwarf. Undiminished line emission through eclipse indicates that the eclipse is caused by the accretion stream, not the secondary star. The hot white dwarf, combined with its current asynchronous nature and rapid timescale for relocking, suggests that V1432 Aql underwent a nova eruption in the past 75-150 yr. The reversed sense of asynchronism, with the primary star currently spinning up toward synchronism, is not necessarily at odds with this scenario, if the rotation of the magnetic white dwarf can couple to the ejecta during the wind phase of the eruption.Comment: To appear in ApJ Part 1; 25 pages, 12 figure

    X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar

    Get PDF
    A detailed analysis of X-ray data from ROSAT, ASCA, XMM and RXTE for the asynchronous polar V1432 Aql along with Stokes polarimetry data from SAAO, is presented. Power spectra from long-baseline ROSAT data show a spin period of 12150s along with several system related frequency components. However, the second harmonic of the spin period dominates power spectrum in the XMM data. For the optical circular polarization, the dominant period corresponds to half the spin period. The ROSAT data can be explained as due to accretion onto two hot spots that are not anti-podal. The variations seen in the optical polarization and the ASCA and XMM data suggest the presence of at least three accretion foot prints on the white dwarf surface. Two spectral models, a multi-temperature plasma and a photo-ionized plasma model, are used for spectral study. The RXTE PCA data are used to constrain the white dwarf mass to 1.2±\pm0.1 M_odot using the multi-temperature plasma model. A strong soft X-ray excess (<0.8 keV) in the XMM MOS data is well modeled by a blackbody component having a temperature of 80-90 eV. The plasma emission lines seen at 6.7 and 7.0 keV are well fitted using the multi-temperature plasma model, however an additional Gaussian is needed for the 6.4 keV line. The multi-temperature plasma model requires a homogeneous absorber fully covering the source and a partial absorber covering 65% of the source. The photo-ionized plasma model, with a range of Fe column densities, gives a slightly better overall fit and fits all emission lines. The presence of a strong blackbody component, a spin period of 12150s, modulation of the 6.4 keV line flux with spin period, and a very hard X-ray component suggest that V1432 Aql is a polar with X-ray spectral properties similar to that of a soft intermediate polar.Comment: 46 pages, including 13 figures and 4 tables, To appear in The Astrophysical Journal, 20 May 2005 issue, vol. 625, Added Report-no and Journal-ref, no change in the text of the pape

    An alternative model of the magnetic cataclysmic variable V1432 Aquilae (=RX J1940.1-1025)

    Get PDF
    V1432 Aql is currently considered to be an asynchronous AM Her type system, with an orbital period of 12116.3 s and a spin period of 12150 s. I present an alternative model in which V1432 Aql is an intermediate polar with disk overflow or diskless accretion geometry, with a spin period near 4040 s. I argue that published data are insufficient to distinguish between the two models; instead, I provide a series of predictions of the two models that can be tested against future observations.Comment: 10 pages LaTeX including 3 Postscript Figures, to be published in Ap

    Debye-Hueckel solution for steady electro-osmotic flow of a micropolar fluid in a cylindrical microcapillary

    Full text link
    Analytic expressions for the speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting steady, symmetric and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hueckel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. As the aciculate particles in a micropolar fluid can rotate without translation, micropolarity influences fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies as the radius increases. The stress tensor is confined to the region near the wall of the microcapillary but the couple stress tensor is uniform across the cross-section.Comment: 19 page
    corecore