109 research outputs found
Ultrasound and clinical preoperative characteristics for discrimination between ovarian metastatic colorectal cancer and primary ovarian cancer: A case-control study
The aim of this study was to describe the clinical and sonographic features of ovarian metastases originating from colorectal cancer (mCRC), and to discriminate mCRC from primary ovarian cancer (OC). We conducted a multi-institutional, retrospective study of consecutive patients with ovarian mCRC who had undergone ultrasound examination using the International Ovarian Tumor Analysis (IOTA) terminology, with the addition of evaluating signs of necrosis and abdominal staging. A control group included patients with primary OC. Clinical and ultrasound data, subjective assessment (SA), and an assessment of different neoplasias in the adnexa (ADNEX) model were evaluated. Fisher's exact and Student's t-tests, the area under the receiver-operating characteristic curve (AUC), and classification and regression trees (CART) were used to conduct statistical analyses. In total, 162 patients (81 with OC and 81 with ovarian mCRC) were included. None of the patients with OC had undergone chemotherapy for CRC in the past, compared with 40% of patients with ovarian mCRC (p < 0.001). The ovarian mCRC tumors were significantly larger, a necrosis sign was more frequently present, and tumors had an irregular wall or were fixed less frequently; ascites, omental cake, and carcinomatosis were less common in mCRC than in primary OC. In a subgroup of patients with ovarian mCRC who had not undergone treatment for CRC in anamnesis, tumors were larger, and had fewer papillations and more locules compared with primary OC. The highest AUC for the discrimination of ovarian mCRC from primary OC was for CART (0.768), followed by SA (0.735) and ADNEX calculated with CA-125 (0.680). Ovarian mCRC and primary OC can be distinguished based on patient anamnesis, ultrasound pattern recognition, a proposed decision tree model, and an ADNEX model with CA-125 levels
Coupled Growth and Division of Model Protocell Membranes
The generation of synthetic forms of cellular life requires solutions to the problem of how biological processes such as cyclic growth and division could emerge from purely physical and chemical systems. Small unilamellar fatty acid vesicles grow when fed with fatty acid micelles and can be forced to divide by extrusion, but this artificial division process results in significant loss of protocell contents during each division cycle. Here we describe a simple and efficient pathway for model protocell membrane growth and division. The growth of large multilamellar fatty acid vesicles fed with fatty acid micelles, in a solution where solute permeation across the membranes is slow, results in the transformation of initially spherical vesicles into long thread-like vesicles, a process driven by the transient imbalance between surface area and volume growth. Modest shear forces are then sufficient to cause the thread-like vesicles to divide into multiple daughter vesicles without loss of internal contents. In an environment of gentle shear, protocell growth and division are thus coupled processes. We show that model protocells can proceed through multiple cycles of reproduction. Encapsulated RNA molecules, representing a primitive genome, are distributed to the daughter vesicles. Our observations bring us closer to the laboratory synthesis of a complete protocell consisting of a self-replicating genome and a self-replicating membrane compartment. In addition, the robustness and simplicity of this pathway suggests that similar processes might have occurred under the prebiotic conditions of the early Earth.Exobiology Program (U.S.) (Grant EXB02- 0031-0018)United States. National Aeronautics and Space Administration (Exobiology Program) (Grant EXB02-0031-0018)Howard Hughes Medical Institute (Investigator
Oxidative Modifications of Rat Liver Cell Components During Fasciola hepatica Infection
The aim of this paper was to assess the influence of Fasciola hepatica infection on oxidative modifications of rat liver cell components such as proteins and lipids. Wistar rats were infected per os with 30 metacercariae of F. hepatica. Activities and concentrations of liver damage markers were determined in the 4th, 7th, and 10th week postinfection (wpi). A decrease in antioxidant capacity of the host liver, manifested by a decrease in total antioxidant status (TAS), was observed. Diminution of antioxidant abilities resulted in enhanced oxidative modifications of lipids and proteins. F. hepatica infection enhanced lipid peroxidation, which was visible in the statistically significant increase in the level of different lipid peroxidation products such as conjugated dienes (CDs), lipid hydroperoxides (LOOHs), malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). The level of protein modification markers in the rat liver was also significantly changed and the most intensified changes were observed at seventh week postinfection. Concentration of carbonyl groups and dityrosine was significantly increased, whereas the level of tryptophan and sulfhydryl and amino groups was decreased. Changes in the antioxidant abilities of the liver and in the lipid and protein structure of the cell components resulted in destruction of the function of the liver. F. hepatica infection was accompanied by raising serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as markers of liver damage. A significant decrease in lysosomal as well as in the total activity of cathepsin B during fasciolosis was also observed
1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis
Background: 1-methylnicotinamide (1-MNA), an endogenous metabolite of nicotinamide, has recently gained interest due to its anti-inflammatory and anti-thrombotic activities linked to the COX-2/PGI2 pathway. Given the previously reported anti-metastatic activity of prostacyclin (PGI2), we aimed to assess the effects of 1-MNA and its structurally related analog, 1,4-dimethylpyridine (1,4-DMP), in the prevention of cancer metastasis. Methods: All the studies on the anti-tumor and anti-metastatic activity of 1-MNA and 1,4-DMP were conducted using the model of murine mammary gland cancer (4T1) transplanted either orthotopically or intravenously into female BALB/c mouse. Additionally, the effect of the investigated molecules on cancer cell-induced angiogenesis was estimated using the matrigel plug assay utilizing 4T1 cells as a source of pro-angiogenic factors. Results: Neither 1-MNA nor 1,4-DMP, when given in a monotherapy of metastatic cancer, influenced the growth of 4T1 primary tumors transplanted orthotopically; however, both compounds tended to inhibit 4T1 metastases formation in lungs of mice that were orthotopically or intravenously inoculated with 4T1 or 4T1-luc2-tdTomato cells, respectively. Additionally, while 1-MNA enhanced tumor vasculature formation and markedly increased PGI2 generation, 1,4-DMP did not have such an effect. The anti-metastatic activity of 1-MNA and 1,4-DMP was further confirmed when both agents were applied with a cytostatic drug in a combined treatment of 4T1 murine mammary gland cancer what resulted in up to 80 % diminution of lung metastases formation. Conclusions: The results of the studies presented below indicate that 1-MNA and its structural analog 1,4-DMP prevent metastasis and might be beneficially implemented into the treatment of metastatic breast cancer to ensure a comprehensive strategy of metastasis control
- …