109 research outputs found

    Security consideration for virtualization

    Get PDF
    Virtualization is not a new technology, but has recently experienced a resurgence of interest among industry and research. New products and technologies are emerging quickly, and are being deployed with little considerations to security concerns. It is vital to understand that virtualization does not improve security by default. Hence, any aspect of virtualization needs to undergo constant security analysis and audit. Virtualization is a changeable and very dynamic field with an uncertain outcome. In this paper we outline the security model of hypervisors and illustrate the significance of ongoing security analysis by describing different state of the art threat models. Finally, we provide recommendations and design considerations for a more secure virtual infrastructure

    Spinoza i platonizm. Cz. II

    Get PDF
    The first Polish translation of a classic work on the relation of Spinoza and Platonism (part II)Jolanta Żelazna (tłumaczka, Uniwersytet Mikołaja Kopernika w Toruniu

    Spinoza i platonizm. Cz. I

    Get PDF
    The first Polish translation of a classic work on the relation of Spinoza and Platonism (part I)Przekład i opracowanie Jolanta Żelazn

    The Centers of Early-Type Galaxies with HST III: Non-Parametric Recovery of Stellar Luminosity Distributions

    Full text link
    We have non-parametrically determined the luminosity density profiles and their logarithmic slopes for 42 early-type galaxies observed with HST. Assuming that the isodensity contours are spheroidal, then the luminosity density is uniquely determined from the surface brightness data through the Abel equation. For nearly all the galaxies in our sample, the logarithmic slope of the luminosity density measured at 0.1" (the innermost reliable measurement with the uncorrected HST) is significantly different from zero; i.e. most elliptical galaxies have cusps. There are only two galaxies for which an analytic core cannot be excluded. The distribution of logarithmic slopes at 0.1" appears to be bimodal, confirming the conclusion of Lauer et al. (1995) that early-type galaxies can be divided into two types based on their surface-brightness profiles; i.e., those with cuspy cores and those whose steep power-law profiles continue essentially unchanged in to the resolution limit. The peaks in the slope distribution occur at -0.8 and -1.9. More than half of the galaxies have slopes steeper than -1.0. Taken together with the recent theoretical work of Merritt & Fridman, these results suggest that many (and maybe most) elliptical galaxies are either nearly axisymmetric or spherical near the center, or slowly evolve due to the influence of stochastic orbits.Comment: uuencoded compressed tarfile 21 pages with 6 fig, 1 tabl

    KI-Methoden beim Entwurf komplexer Gebäude

    Get PDF
    Anhand von Ergebnissen aus dem FABEL-Projekt wird gezeigt, welche Beiträge Methoden der Künstlichen Intelligenz, insbesondere der Wissensverarbeitung beim Entwurf komplexer Gebäude leisten können. Exemplarisch werden spezialisierte wissensintensive Methoden, und allgemeine fallbasierte Methoden zum Retrieval und zur Wiederverwendung früherer Entwürfe vorgestellt. Es werden Fragen der Integration von Wissen, Fällen und Daten diskutiert. Der Prototyp des FABEL-Projekts verwendet die Metapher der virtuellen Baustelle, um die verschiedenen Methoden als Planungswerkzeuge in einem CAD-System integriert anzubieten. Ein Planungsmodell dient der zusätzlichen Orientierung des Planers. Die Ergebnisse sind interessant für den Entwurf komplexer Unikate, dürften aber auch als Zusatz zu elektronisch angebotenen Katalogen relevant sein

    Spectroscopic Evidence for a Supermassive Black Hole in NGC 4486B

    Get PDF
    The stellar kinematics of the dwarf elliptical galaxy NGC 4486B have been measured in seeing sigma_* = .22 arcsec with the Canada-France-Hawaii Telescope. Lauer et al. 1996, ApJ, 471, L79 have shown that NGC 4486B is similar to M31 in having a double nucleus. We show that it also resembles M31 in its kinematics. The velocity dispersion gradient is very steep: sigma increases from 116 +- 6 km/s at r = 2" - 6" to 281 +- 11 km/s at the center. This is much higher than expected for an elliptical galaxy of absolute magnitude M_B = -16.8: NGC 4486B is far above the scatter in the Faber-Jackson correlation between sigma and bulge luminosity. Therefore the King core mass-to-light ratio, M/L_V = 20, is unusually high compared with normal values for old stellar populations. We construct dynamical models with isotropic velocity dispersions and show that they reproduce black hole (BH) masses derived by more detailed methods. We also fit axisymmetric, three-integral models. Isotropic models imply that NGC 4486B contains a central dark object, probably a BH, of mass M_BH = 6^{+3}_{-2} x 10^8 M_sun. However, anisotropic models fit the data without a BH if the ratio of radial to azimuthal dispersions is ~ 2 at 1". Therefore this is a less strong BH detection than the ones in M31, M32, and NGC 3115. A 6 x 10^8 M_sun BH is 9 % of the mass M_bulge in stars; even if M_BH is smaller than the isotropic value, M_BH/M_bulge is likely to be unusually large. Double nuclei are a puzzle because the dynamical friction timescales for self-gravitating star clusters in orbit around each other are short. Since both M31 and NGC 4486B contain central dark objects, our results support models in which the survival of double nuclei is connected with the presence of a BH (e. g., Tremaine 1995, AJ, 110, 628).Comment: 5 pages, 5 figs, TeX, ApJL in pres

    The Centers of Early-Type Galaxies with HST. IV. Central Parameter Relations

    Full text link
    We analyze Hubble Space Telescope surface-brightness profiles of 61 elliptical galaxies and spiral bulges (hot galaxies). Luminous hot galaxies have cuspy cores with steep outer power-law profiles that break at r ~ r_b to shallow inner profiles with logslope less than 0.3. Faint hot galaxies show steep, largely featureless power-law profiles at all radii and lack cores. The centers of power-law galaxies are up to 1000 times denser in mass and luminosity than the cores of large galaxies at a limiting radius of 10 pc. At intermediate magnitudes (-22.0 < M_V < -20.5), core and power-law galaxies coexist, and there is a range in r_b at a given luminosity of at least two orders of magnitude. Central properties correlate with global rotation and shape: core galaxies tend to be boxy and slowly rotating, whereas power-law galaxies tend to be disky and rapidly rotating. The dense power-law centers of disky, rotating galaxies are consistent with their formation in gas-rich mergers. The parallel proposition that cores are simply the by-products of gas-free stellar mergers is less compelling. For example, core galaxies accrete small, dense, gas-free galaxies at a rate sufficient to fill in low-density cores if the satellites survived and sank to the center. An alternative model for core formation involves the orbital decay of massive black holes (BHs): the BH may heat and eject stars from the center, eroding a power law if any exists and scouring out a core. An average BH mass per spheroid of 0.002 times the stellar mass yields reasonably good agreement with the masses and radii of observed cores and in addition is consistent with the energetics of AGNs and kinematic detections of BHs in nearby galaxies.Comment: 40 pages (Tex) with 10 figures and 4 tables (Postscript). To appear in the November 1997 Astronomical Journal. The discussion section is significantly revised from the original submission to Astro-ph, dated October 1996. One figure is slightly altered, and the data tables are the sam

    The slope of the black-hole mass versus velocity dispersion correlation

    Get PDF
    Observations of nearby galaxies reveal a strong correlation between the mass of the central dark object M and the velocity dispersion sigma of the host galaxy, of the form log(M/M_sun) = a + b*log(sigma/sigma_0); however, published estimates of the slope b span a wide range (3.75 to 5.3). Merritt & Ferrarese have argued that low slopes (<4) arise because of neglect of random measurement errors in the dispersions and an incorrect choice for the dispersion of the Milky Way Galaxy. We show that these explanations account for at most a small part of the slope range. Instead, the range of slopes arises mostly because of systematic differences in the velocity dispersions used by different groups for the same galaxies. The origin of these differences remains unclear, but we suggest that one significant component of the difference results from Ferrarese & Merritt's extrapolation of central velocity dispersions to r_e/8 (r_e is the effective radius) using an empirical formula. Another component may arise from dispersion-dependent systematic errors in the measurements. A new determination of the slope using 31 galaxies yields b=4.02 +/- 0.32, a=8.13 +/- 0.06, for sigma_0=200 km/s. The M-sigma relation has an intrinsic dispersion in log M that is no larger than 0.3 dex. In an Appendix, we present a simple model for the velocity-dispersion profile of the Galactic bulge.Comment: 37 pages, 9 figure
    corecore