3,613 research outputs found

    Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthora infestans based on differential expression combined with SNP association and linkage mapping.

    Get PDF
    Late blight of potato (Solanum tuberosum L.) caused by the oomycete Phytophthora infestans (Mont.) de Bary, is one of the most important bottlenecks of potato production worldwide. Cultivars with high levels of durable, race unspecific, quantitative resistance are part of a solution to this problem. However, breeding for quantitative resistance is hampered by the correlation between resistance and late plant maturity, which is an undesirable agricultural attribute. The objectives of our research are (i) the identification of genes that condition quantitative resistance to P. infestans not compromised by late plant maturity and (ii) the discovery of diagnostic single nucleotide polymorphism (SNP) markers to be used as molecular tools to increase efficiency and precision of resistance breeding. Twenty two novel candidate genes were selected based on comparative transcript profiling by SuperSAGE (serial analysis of gene expression) in groups of plants with contrasting levels of maturity corrected resistance (MCR). Reproducibility of differential expression was tested by quantitative real time PCR and allele specific pyrosequencing in four new sets of genotype pools with contrasting late blight resistance levels, at three infection time points and in three independent infection experiments. Reproducibility of expression patterns ranged from 28 to 97%. Association mapping in a panel of 184 tetraploid cultivars identified SNPs in five candidate genes that were associated with MCR. These SNPs can be used in marker-assisted resistance breeding. Linkage mapping in two half-sib families (n = 111) identified SNPs in three candidate genes that were linked with MCR. The differentially expressed genes that showed association and/or linkage with MCR putatively function in phytosterol synthesis, fatty acid synthesis, asparagine synthesis, chlorophyll synthesis, cell wall modification, and in the response to pathogen elicitors

    A 20 Thousand Solar Mass Black Hole in the Stellar Cluster G1

    Get PDF
    We present the detection of a 2.0(+1.4,-0.8)x10^4 solar mass black hole (BH) in the stellar cluster G1 (Mayall II), based on data taken with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. G1 is one of the most massive stellar clusters in M31. The central velocity dispersion (25 kms) and the measured BH mass of G1 places it on a linear extrapolation of the correlation between BH mass and bulge velocity dispersion established for nearby galaxies. The detection of a BH in this low-mass stellar system suggests that (1) the most likely candidates for seed massive BHs come from stellar clusters, (2) there is a direct link between massive stellar clusters and normal galaxies, and (3) the formation process of both bulges and massive clusters is similar due to their concordance in the M_BH/sigma relation. Globular clusters in our Galaxy should be searched for central BHs.Comment: 4 pages, accepted in The Astrophysical Journal Letters, October 200

    Phenotypic plasticity for life-history traits in Drosophila melanogaster. III. Effect of the environment on genetic parameters

    Get PDF
    We estimated genetic and environmental variance components for developmental time and dry weight at eclosion in Drosophila melanogaster raised in ten different environments (all combinations of 22, 25 and 28°C and 0·5, 1 and 4% yeast concentration, and 0·25% yeast at 25°C). We used six homozygous lines derived from a natural population for complete diallel crosses in each environment. Additive genetic variances were consistently low for both traits (h2 around 10%). The additive genetic variance of developmental time was larger at lower yeast concentrations, but the heritability did not increase because other components were also larger. The additive genetic effects of the six parental lines changed ranks across environments, suggesting a mechanism for the maintenance of genetic variation in heterogenous environments. The variance due to non-directional dominance was small in most environments. However, there was directional dominance in the form of inbreeding depression for both traits. It was pronounced at high yeast levels and temperatures but disappeared when yeast or temperature were decreased. This meant that the heterozygous flies were more sensitive to environmental differences than homozygous flies. Because dominance effects are not heritable, this suggests that the evolution of plasticity can be constrained when dominance effects are important as a mechanism for plasticit

    A Stellar Dynamical Measurement of the Black Hole Mass in the Maser Galaxy NGC 4258

    Full text link
    We determine the mass of the black hole at the center of the spiral galaxy NGC 4258 by constructing axisymmetric dynamical models of the galaxy. These models are constrained by high spatial resolution imaging and long-slit spectroscopy of the nuclear region obtained with the {\em Hubble Space Telescope}, complemented by ground-based observations extending to larger radii. Our best mass estimate is \MBH = (3.3 \pm 0.2) \times 10^7 \MSun for a distance of 7.28 Mpc (statistical errors only). This is within 15% of (3.82\pm 0.01) \times 10^7 \MSun, the mass determined from the kinematics of water masers (rescaled to the same distance) assuming they are in Keplerian rotation in a warped disk. The construction of accurate dynamical models of NGC 4258 is somewhat compromised by an unresolved active nucleus and color gradients, the latter caused by variations in the stellar population and/or obscuring dust. These problems are not present in the 30\sim 30 other black hole mass determinations from stellar dynamics that have been published by us and other groups; thus, the relatively close agreement between the stellar dynamical mass and the maser mass in NGC 4258 enhances our confidence in the black hole masses determined in other galaxies from stellar dynamics using similar methods and data of comparable quality.Comment: 58 pages, submitted to ApJ. Some figures excluded due to size. The entire paper is at http://www.noao.edu/noao/staff/lauer/nuker_papers.htm

    The Existence of Sterile Neutrino Halos in Galactic Centers as an Explanation of the Black Hole mass - Velocity Dispersion Relation

    Full text link
    If sterile neutrinos exist and form halos in galactic centers, they can give rise to observational consequences. In particular, the sterile neutrinos decay radiatively and heat up the gas in the protogalaxy to achieve hydrostatic equilibrium, and they provide the mass to form supermassive blackholes. A natural correlation between the blackhole mass and velocity dispersion thus arises log(MBH,f/M)=αlog(σ/200kms1)+β\log(M_{BH,f}/M_{\odot})=\alpha \log (\sigma /200 {\rm km s^{-1}})+ \beta with α4\alpha \approx 4 and β8\beta \approx 8.Comment: Accepted in Ap

    How to calibrate your sprayer

    Get PDF
    Caption title

    The Candidate Intermediate-Mass Black Hole in the Globular Cluster M54

    Get PDF
    Ibata et al. reported evidence for density and kinematic cusps in the Galactic globular cluster M54, possibly due to the presence of a 9400 solar-mass black hole. Radiative signatures of accretion onto M54's candidate intermediate-mass black hole (IMBH) could bolster the case for its existence. Analysis of new Chandra and recent Hubble Space Telescope astrometry rules out the X-ray counterpart to the candidate IMBH suggested by Ibata et al. If an IMBH exists in M54, then it has an Eddington ratio of L(0.3-8 keV) / L(Edd) < 1.4 x 10^(-10), more similar to that of the candidate IMBH in M15 than that in G1. From new imaging with the NRAO Very Large Array, the luminosity of the candidate IMBH is L(8.5 GHz) < 3.6 x 10^29 ergs/s (3 sigma). Two background active galaxies discovered toward M54 could serve as probes of its intracluster medium.Comment: 4 pages; 2 figures; emulateapj.cls; to appear in A
    corecore