77 research outputs found
Knockdown of TIGAR by RNA interference induces apoptosis and autophagy in HepG2 hepatocellular carcinoma cells
AbstractApoptosis and autophagy are crucial mechanisms regulating cell death, and the relationship between apoptosis and autophagy in the liver has yet to be thoroughly explored. TIGAR (TP53-induced glycolysis and apoptosis regulator), which is a p53-inducible gene, functions in the suppression of ROS (reactive oxygen species) and protects U2OS cells from undergoing cell death. In this study, silencing TIGAR by RNAi (RNA interference) in HepG2 cells down-regulated both TIGAR mRNA (∼75%) and protein levels (∼80%) and led to the inhibition of cell growth (P<0.01) by apoptosis (P<0.001) and autophagy. We demonstrated that TIGAR can increase ROS levels in HepG2 cells. The down-regulation of TIGAR led to the induction of LC-3 II (specific autophagic marker), the formation of the autophagosome, and increased Beclin-1 expression. 3-MA (3-Methyladenine), an inhibitor of autophagic sequestration blocker, inhibited TIGAR siRNA-enhanced autophagy, as indicated by the decrease in LC-3 II levels. Consequently, these data provide the first evidence that targeted silencing of TIGAR induces apoptotic and autophagic cell death in HepG2 cells, and our data raise hope for the future successful application of TIGAR siRNA in patients with hepatocellular carcinoma (HCC)
Intrachromosomal Looping Is Required for Activation of Endogenous Pluripotency Genes during Reprogramming
SummaryGeneration of induced pluripotent stem cells (iPSCs) by defined factors is an extremely inefficient process, because there is a strong epigenetic block preventing cells from achieving pluripotency. Here we report that virally expressed factors bound to the promoters of their target genes to the same extent in both iPSCs and unreprogrammed cells (URCs). However, expression of endogenous pluripotentcy genes was observed only in iPSCs. Comparison of local chromatin structure of the OCT4 locus revealed that there was a cohesin-complex-mediated intrachromosomal loop that juxtaposes a downstream enhancer to the gene’s promoter, enabling activation of endogenous stemness genes. None of these long-range interactions were observed in URCs. Knockdown of the cohesin-complex gene SMC1 by RNAi abolished the intrachromosomal interaction and affected pluripotency. These findings highlight the importance of the SMC1-orchestrated intrachromosomal loop as a critical epigenetic barrier to the induction of pluripotency
Interruption of intrachromosomal looping by CCCTC binding factor decoy proteins abrogates genomic imprinting of human insulin-like growth factor II
CCCTC binding factor (CTCF) mutants that cannot bind components of the polycomb repressive complex-2 (PRC2) do not form the chromatin loops that regulate monoallelic gene expression
Novel insight into RNA modifications in tumor immunity: Promising targets to prevent tumor immune escape
An immunosuppressive state is a typical feature of the tumor microenvironment. Despite the dramatic success of immune checkpoint inhibitor (ICI) therapy in preventing tumor cell escape from immune surveillance, primary and acquired resistance have limited its clinical use. Notably, recent clinical trials have shown that epigenetic drugs can significantly improve the outcome of ICI therapy in various cancers, indicating the importance of epigenetic modifications in immune regulation of tumors. Recently, RNA modifications (N6-methyladenosine [m6A], N1-methyladenosine [m1A], 5-methylcytosine [m5C], etc.), novel hotspot areas of epigenetic research, have been shown to play crucial roles in protumor and antitumor immunity. In this review, we provide a comprehensive understanding of how m6A, m1A, and m5C function in tumor immunity by directly regulating different immune cells as well as indirectly regulating tumor cells through different mechanisms, including modulating the expression of immune checkpoints, inducing metabolic reprogramming, and affecting the secretion of immune-related factors. Finally, we discuss the current status of strategies targeting RNA modifications to prevent tumor immune escape, highlighting their potential
The novel roles of circRNAs in human cancer
Abstract Covalently closed single-stranded circular RNAs (circRNAs) consist of introns or exons and are widely present in eukaryotic cells. CircRNAs generally have low expression levels and relatively stable structures compared with messenger RNAs (mRNAs), most of which are located in the cytoplasm and often act in cell type and tissue-specific manners, indicating that they may serve as novel biomarkers. In recent years, circRNAs have gradually become a hotspot in the field of RNA and cancer research, but the functions of most circRNAs have not yet been discovered. Known circRNAs can affect the biogenesis of cancers in diverse ways, such as functioning as a microRNA (miRNA) sponges, combining with RNA binding proteins (RBPs), working as a transcription factor and translation of proteins. In this review, we summarize the characteristics and types of circRNAs, introduce the biogenesis of circRNAs, discuss the emerging functions and databases on circRNAs and present the current challenges of circRNAs studies
Senescent endothelial cells promote liver metastasis of uveal melanoma in single-cell resolution
Abstract Background Uveal melanoma (UM), the most common adult intraocular tumor, is characterized by high malignancy and poor prognosis in advanced stages. Angiogenesis is critical for UM development, however, not only the role of vascular endothelial dysfunction in UM remains unknown, but also their analysis at the single-cell level has been lacking. A comprehensive analysis is essential to clarify the role of the endothelium in the development of UM. Methods By using single-cell RNA transcriptomics data of 11 cases of primary and liver metastasis UM, we analyzed the endothelial cell status. In addition, we analyzed and validated ECs in the in vitro model and collected clinical specimens. Subsequently, we explored the impact of endothelial dysfunction on UM cell migration and explored the mechanisms responsible for the endothelial cell abnormalities and the reasons for their peripheral effects. Results UM metastasis has a significantly higher percentage of vascular endothelial cells compared to in situ tumors, and endothelial cells in metastasis show significant senescence. Senescent endothelial cells in metastatic tumors showed significant Krüppel-like factor 4 (KLF4) upregulation, overexpression of KLF4 in normal endothelial cells induced senescence, and knockdown of KLF4 in senescent endothelium inhibited senescence, suggesting that KLF4 is a driver gene for endothelial senescence. KLF4-induced endothelial senescence drove tumor cell migration through a senescence-associated secretory phenotype (SASP), of which the most important component of the effector was CXCL12 (C-X-C motif chemokine ligand 12), and participated in the composition of the immunosuppressive microenvironment. Conclusion This study provides an undesirable insight of senescent endothelial cells in promoting UM metastasis
Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity
Abstract Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good
- …