13 research outputs found
Fabrication Methods for Adaptive Deformable Mirrors
Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon substrate, but this will require tighter DRIE process control as well as generally longer and less efficient XeF2 etch. In the second approach, the actuator film stack is first constructed on a silicon wafer. It helps to use a polyimide intermediate layer such as Kapton because the adhesion between the polyimide and silicon is generally weak. A mirror mount ring is attached by using adhesive. Then, the assembly is partially submerged in liquid water. The water tends to seep between the actuator film stack and silicon substrate. As a result, the actuator membrane can be gently released from the silicon substrate. The actuator membrane is very flat because it is fixed to the mirror mount prior to the release. Deformable mirrors require extremely good surface optical quality. In the technology described here, the deformable mirror is fabricated on pristine substrates such as prime-grade silicon wafers. The deformable mirror is released by selectively removing the substrate. Therefore, the released deformable mirror surface replicates the optical quality of the underlying pristine substrate
A lightweight tile structure integrating photovoltaic conversion and RF power transfer for space solar power applications
We demonstrate the development of a prototype lightweight (1.5 kg/m^3) tile structure capable of photovoltaic solar power capture, conversion to radio frequency power, and transmission through antennas. This modular tile can be repeated over an arbitrary area to forma large aperture which could be placed in orbit to collect sunlight and transmit electricity to any location. Prototype design is described and validated through finite element analysis, and high-precision ultra-light component manufacture and robust assembly are described
A lightweight tile structure integrating photovoltaic conversion and RF power transfer for space solar power applications
We demonstrate the development of a prototype lightweight (1.5 kg/m^3) tile structure capable of photovoltaic solar power capture, conversion to radio frequency power, and transmission through antennas. This modular tile can be repeated over an arbitrary area to forma large aperture which could be placed in orbit to collect sunlight and transmit electricity to any location. Prototype design is described and validated through finite element analysis, and high-precision ultra-light component manufacture and robust assembly are described
A flexible phased array system with low areal mass density
Phased arrays are multiple antenna systems capable of forming and steering beams electronically using constructive and destructive interference between sources. They are employed extensively in radar and communication systems but are typically rigid, bulky and heavy, which limits their use in compact or portable devices and systems. Here, we report a scalable phased array system that is both lightweight and flexible. The array architecture consists of a self-monitoring complementary metal–oxide–semiconductor-based integrated circuit, which is responsible for generating multiple independent phase- and amplitude-controlled signal channels, combined with flexible and collapsible radiating structures. The modular platform, which can be collapsed, rolled and folded, is capable of operating standalone or as a subarray in a larger-scale flexible phased array system. To illustrate the capabilities of the approach, we created a 4 × 4 flexible phased array tile operating at 9.4–10.4 GHz, with a low areal mass density of 0.1 g cm^(−2). We also created a flexible phased array prototype that is powered by photovoltaic cells and intended for use in a wireless space-based solar power transfer array
Thin Metastructures with Engineered Thermal Expansion
The geometry and constituent materials of metastructures can be used to engineer the thermal expansion coefficient. In this thesis, we design, fabricate, and test thin thermally stable metastructures consisting of bi-metallic unit cells and show how the coefficient of thermal expansion (CTE) of these metastructures can be finely and coarsely tuned by varying the CTE of the constituent materials and the unit cell geometry. Planar and three-dimensional finite element method modeling is used to drive the design and inform experiments, and predict the response of these metastructures. We demonstrate computationally the significance of out-of-plane effects in the metastructure response. We develop an experimental setup using digital image correlation and an infrared camera to experimentally measure full displacement and temperature fields during testing and accurately measure the metastructures’ CTE. We experimentally demonstrate high aspect ratio metastructures of Ti/Al and Kovar/Al which exhibit near-zero and negative CTE, respectively. We demonstrate robust fabrication procedures for thermally stable samples with high aspect ratios in thin foil and thin film scales. We investigate the lattice structure and mechanical properties of thin films comprising a near-zero CTE metastructure. The mechanics developed in this work can be used to engineer metastructures of arbitrary CTE and can be extended to three dimensions
Tension-Stabilized Coiling of Isotropic Tape Springs
A tape spring can be held tightly coiled on a circular cylinder by means of a tension force applied at the tip. This paper determines the smallest value of the required tension force by means of analytical methods, experiments and detailed numerical simulations. The minimum force depends on the coiling ratio, defined as the ratio between the transverse radius of the tape spring and the radius of the cylinder. It varies with an inverse quadratic relation for coiling ratios smaller than 1 (bending-dominated regime) and with a linear relation for coiling ratios greater than 3.424 (tension-dominated regime). For coiling ratios between 1 and 3.424 there is an intermediate behavior, and the required tension force is non-unique and rather small
Tension-Stabilized Coiling of Isotropic Tape Springs
A tape spring can be held tightly coiled on a circular cylinder by means of a tension force applied at the tip. This paper determines the smallest value of the required tension force by means of analytical methods, experiments and detailed numerical simulations. The minimum force depends on the coiling ratio, defined as the ratio between the transverse radius of the tape spring and the radius of the cylinder. It varies with an inverse quadratic relation for coiling ratios smaller than 1 (bending-dominated regime) and with a linear relation for coiling ratios greater than 3.424 (tension-dominated regime). For coiling ratios between 1 and 3.424 there is an intermediate behavior, and the required tension force is non-unique and rather small
Ultralight Spacecraft Structure Prototype
We demonstrate the development of a lightweight 1.7 m X 1.7 m prototype spacecraft structure with areal density of 150 g/m^2. The structure is composed of individual ladder-type components that can be used to support flexible multi0-functional elements such as integrated power collection and wireless transmission tiles used for space solar power. This spacecraft structure design is scalable up to 60 m X 60 m. The structural design, ultra-light component manufacture and, prototype assembly are demonstrated. Shape accuracy within 0.5° from nominal is achieved and outlook for further mass reduction is described
Design and Prototyping Efforts for the Space Solar Power Initiative
The Space Solar Power Initiative (SSPI) seeks to enable reliable, cost-effective baseload power generation from large-scale solar power stations in space. We propose an ultralight, modular power station, having specific power in the range of 1–10 kW/kg for the photovoltaic (PV) collection subsystem. The building block of the power station is the ‘tile,’ a self-contained element that performs PV energy collection, conversion to radio frequency (RF), and transmission to earth. To minimize PV mass, we select a 1D, 10–20X parabolic trough concentrator geometry, which provides cooling and radiation shielding for the cells, and which folds flat for deployment. Here, we discuss the design, fabrication, and testing of the initial PV tile prototypes