23 research outputs found
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Detection of extended-spectrum beta-lactamase and scarbapenemase-producing Enterobacteriaceae in Tunisia
The emergence of dramatic urinary tract infections (UTIs) caused by the members of the Enterobacteriales is an important public health problem in the community as well as in Tunisian hospitals. This study aims to investigate the prevalence of extended-spectrum β-lactamase (ESBL) and carbapenemase-producing uropathogenic isolates of Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae). Based on decreased susceptibility to β-lactams antibiotics and analyzed for the presence of ESBL and carbapenemase genes by Real Time- polymerase chain reaction (RT-PCR), 56 uropathogenic isolates of E. coli (n = 36) and K. pneumoniae (n = 20) were confirmed positive for ESBLs. The CTX-M-type β-lactamases were mostly detected in E. coli isolates (21 strains, 58.33% [95% CI 38.09% - 72.06%]) followed by blaSHV-like (18 strains, 50% [95% CI 32.92% - 67.07%]), blaTEM-like and blaCMY-2-like simultaneously (15 strains, 41.67% [95% CI 25.51% - 59.24%]). Furthermore, the RT-PCR system on the K. pneumoniae strains demonstrated that blaSHV-12-like was the most predominant (16 strains, 80% [95% CI 56.33% - 94.26%]) followed by blaTEM-like (14 strains, 70% [95% CI 45.72% - 88.10%]), blaCTX-M belonging to groups 9 and 1 (11 strains, 55% [95% CI 31.52% - 76.94%]) and finally blaCMY-2-like (10 strains, 50% [95% CI 27.19% - 72.80%]). In addition, E. coli and K. pneumoniae strains harbored a carbapenemase gene blaOXA-48-like with 22.2% [95% CI 10.11% - 39.15%]; 20% [95% CI 12.83% - 43.66%], respectively.Our results confirm the need to monitor the resistance to extended-spectrum β-lactams and to carbapenems among enterobacteria in Tunisia
Isolation, Identification, Prevalence, and Genetic Diversity of Bacillus cereus Group Bacteria From Different Foodstuffs in Tunisia
Bacillus cereus group is widespread in nature and foods. Several members of this group are recognized as causing food spoilage and/or health issues. This study was designed to determine the prevalence and genetic diversity of the B. cereus group strains isolated in Tunisia from different foods (cereals, spices, cooked food, fresh-cut vegetables, raw and cooked poultry meats, seafood, canned, pastry, and dairy products). In total, 687 different samples were collected and searched for the presence of the B. cereus group after selective plating on MYP agar and enumeration of each sample. The typical pink-orange uniform colonies surrounded by a zone of precipitate were assumed to belong to the B. cereus group. One typical colony from each sample was subcultured and preserved as cryoculture. Overall, 191 (27.8%) food samples were found positive, giving rise to a collection of 191 B. cereus-like isolates. The concentration of B. cereus-like bacteria were below 103 cfu/g or ml in 77.5% of the tested samples. Higher counts (>104 cfu/g or ml) were found in 6.8% of samples including fresh-cut vegetables, cooked foods, cereals, and pastry products. To verify whether B. cereus-like isolates belonged to the B. cereus group, a PCR test targeting the sspE gene sequence specific of the group was carried out. Therefore, 174 isolates were found to be positive. Food samples were contaminated as follows: cereals (67.6%), pastry products (46.2%), cooked food (40.8%), cooked poultry meat (32.7%), seafood products (32.3%), spices (28.8%), canned products (16.7%), raw poultry meat (9.4%), fresh-cut vegetables (5.0%), and dairy products (4.8%). The 174 B. cereus isolates were characterized by partial sequencing of the panC gene, using a Sym'Previous software tool to assign them to different phylogenetic groups. Strains were distributed as follows: 61.3, 29.5, 7.5, and 1.7% in the group III, IV, II, and V, respectively. The genetic diversity was further assessed by ERIC-PCR and PFGE typing methods. PFGE and ERIC-PCR patterns analysis allowed discriminating 143 and 99 different profiles, respectivey. These findings, associated to a relatively higher prevalence of B. cereus group in different foods, could be a significant etiological agent of food in Tunisia
Isolation, Identification, Prevalence, and Genetic Diversity of Bacillus cereus Group Bacteria From Different Foodstuffs in Tunisia
Bacillus cereus group is widespread in nature and foods. Several members of this group are recognized as causing food spoilage and/or health issues. This study was designed to determine the prevalence and genetic diversity of the B. cereus group strains isolated in Tunisia from different foods (cereals, spices, cooked food, fresh-cut vegetables, raw and cooked poultry meats, seafood, canned, pastry, and dairy products). In total, 687 different samples were collected and searched for the presence of the B. cereus group after selective plating on MYP agar and enumeration of each sample. The typical pink-orange uniform colonies surrounded by a zone of precipitate were assumed to belong to the B. cereus group. One typical colony from each sample was subcultured and preserved as cryoculture. Overall, 191 (27.8%) food samples were found positive, giving rise to a collection of 191 B. cereus-like isolates. The concentration of B. cereus-like bacteria were below 103 cfu/g or ml in 77.5% of the tested samples. Higher counts (>104 cfu/g or ml) were found in 6.8% of samples including fresh-cut vegetables, cooked foods, cereals, and pastry products. To verify whether B. cereus-like isolates belonged to the B. cereus group, a PCR test targeting the sspE gene sequence specific of the group was carried out. Therefore, 174 isolates were found to be positive. Food samples were contaminated as follows: cereals (67.6%), pastry products (46.2%), cooked food (40.8%), cooked poultry meat (32.7%), seafood products (32.3%), spices (28.8%), canned products (16.7%), raw poultry meat (9.4%), fresh-cut vegetables (5.0%), and dairy products (4.8%). The 174 B. cereus isolates were characterized by partial sequencing of the panC gene, using a Sym'Previous software tool to assign them to different phylogenetic groups. Strains were distributed as follows: 61.3, 29.5, 7.5, and 1.7% in the group III, IV, II, and V, respectively. The genetic diversity was further assessed by ERIC-PCR and PFGE typing methods. PFGE and ERIC-PCR patterns analysis allowed discriminating 143 and 99 different profiles, respectivey. These findings, associated to a relatively higher prevalence of B. cereus group in different foods, could be a significant etiological agent of food in Tunisia
The Archaeome’s Role in Colorectal Cancer: Unveiling the DPANN Group and Investigating Archaeal Functional Signatures
Background and Aims: Gut microbial imbalances are linked to colorectal cancer (CRC), but archaea’s role remains underexplored. Here, using previously published metagenomic data from different populations including Austria, Germany, Italy, Japan, China, and India, we performed bioinformatic and statistical analysis to identify archaeal taxonomic and functional signatures related to CRC. Methods: We analyzed published fecal metagenomic data from 390 subjects, comparing the archaeomes of CRC and healthy individuals. We conducted a biostatistical analysis to investigate the relationship between Candidatus Mancarchaeum acidiphilum (DPANN superphylum) and other archaeal species associated with CRC. Using the Prokka tool, we annotated the data focusing on archaeal genes, subsequently linking them to CRC and mapping them against UniprotKB and GO databases for specific archaeal gene functions. Results: Our analysis identified enrichment of methanogenic archaea in healthy subjects, with an exception for Methanobrevibacter smithii, which correlated with CRC. Notably, CRC showed a strong association with archaeal species, particularly Natrinema sp. J7-2, Ferroglobus placidus, and Candidatus Mancarchaeum acidiphilum. Furthermore, the DPANN archaeon exhibited a significant correlation with other CRC-associated archaea (p Candidatus Mancarchaeum acidiphilum, Natrinema sp. J7-2, and Ferroglobus placidus emerge as potential archaeal biomarkers. Archaeal proteins may also offer gut protection, underscoring archaea’s role in CRC dynamics
Molecular characterization of Mycobacterium tuberculosis strains resistant to isoniazid
Objective/background: Tuberculosis is a major public health problem and the emergence of drug resistance complicates the situation even more. It is therefore crucial to implement all conclusions from the studies that aim at a better understanding of the molecular mechanisms which govern the emergence and the evolution of drug resistance. The aim of this study is to assess the degree of involvement of the inhA and katG genes in the acquisition of isoniazid resistance in clinical strains of Mycobacterium tuberculosis.
Methods: The inhA and katG genes were sequenced in 21 strains of M. tuberculosis with different resistance profiles and from different regions.
Results: Analysis of the sequences obtained by comparison to those of the reference strain H37Rv showed that 95.2% had mutations. KatG S315T was the most common mutation (85.7%). The mutation katG T275A was revealed in two strains (9.5%). Two different point mutations in the inhA gene and its promoter region were identified as C-15T and G56A at a frequency equal to 14% and 10%, respectively. The G56A mutation is a new silent mutation. Our study showed no correlation between found mutations and multidrug resistance. Among the 21 strains studied, only one strain showed no mutations.
Conclusion: In terms of this study, we characterized the mutations involved in resistance to isoniazid. katG S315T was by far the most frequent mutation, followed by C-15T. The frequency of these mutations was concordant with those reported in literature including those in intermediate tuberculosis endemic countries
Distribution of HCV Genotypes Among People Who Inject Drugs in Tunisia: New Evidence for Scaling Up Prevention and Treatment Toward National Elimination Goal
<jats:p>Little is known about the distribution of hepatitis C virus (HCV) genotypes among people who inject drugs (PWID) in North African countries, including Tunisia. This study aims to describe HCV genotypes circulating among Tunisian PWID. A cross-sectional study was conducted, and 128 HCV-positive PWID were recruited between 2018 and 2019 from community-based harm reduction centers. After informed consent, sociodemographic characteristics and risk behavior data were obtained using an interviewer-administrated questionnaire. Blood samples were collected for further serological and molecular testing. Overall, five women and 123 men were included. The median age was 39.5 years. The majority of PWID (56.3%) had less than a secondary level of education, were single (57%), were unemployed (65.6%), were incarcerated at least once (93.0%), and had a history of residency in at least one foreign country (50.8%). During the previous 12 months, 82.0% reported having reused syringes at least once, 43.8% shared syringes at least once, while 56.2% had at least one unprotected sexual relation, and 28.1% had more than two different sexual partners. Tattooing was reported among 60.2%. All positive results for HCV-infection by rapid testing were confirmed by enzyme-linked immunosorbent assay (ELISA). HCV-RNA was detectable in 79.7%. Genotyping showed a predominance of genotype 1 (52%) followed by genotype 3 (34%) and genotype 4 (10%). Four patients (4%) had an intergenotype mixed infection. Subtyping showed the presence of six different HCV subtypes as follows: 1a (53.2%), 1b (6.4%), 3a (33.0%), 4a (3.2%), and 4d (4.3%). This is the first study describing circulating HCV genotypes among PWID in Tunisia. The distribution of HCV genotypes is distinct from the general population with a predominance of subtypes 1a and 3a. These findings can be used to guide national efforts aiming to optimize the access of PWID to relevant HCV prevention and treatment measures including pangenotypic regimens for patients infected with HCV genotype 3.</jats:p>
First whole genome sequences and phylogenetic analysis of SARS-CoV-2 virus isolates during COVID-19 outbreak in Tunisia, North Africa.
International audienceFull genomes sequences of six Tunisian SARS-CoV-2 strains were obtained from imported and locally transmission cases during the COVID-19 outbreak. Reported sequences were non-identical with 0.1% nucleotide divergence rate and clustered into 6 different clades with worldwide sequences. SNPs results favor the distribution of the reported Tunisian sequences into 3 major genotypes. These results indicate multiple introductions of the virus in Tunisia and add new genomic data on SARS-CoV-2 at the international level
Immunogenicity of Mix-and-Match CoronaVac/BNT162b2 Regimen versus Homologous CoronaVac/CoronaVac Vaccination: A Single-Blinded, Randomized, Parallel Group Superiority Trial
(1) Background: This study aimed to compare the immunogenicity of the mix-and-match CoronaVac/BNT162b2 vaccination to the homologous CoronaVac/CoronaVac regimen. (2) Methods: We conducted a simple-blinded randomized superiority trial to measure SARS-CoV-2 neutralization antibodies and anti-spike receptor binding domain (RBD) IgG concentrations in blood samples of participants who had received the first dose of CoronaVac vaccine followed by a dose of BNT162b2 or CoronaVac vaccine. The primary endpoint for immunogenicity was the serum-neutralizing antibody level with a percentage of inhibition at 90% at 21–35 days after the boost. A difference of 25% between groups was considered clinically relevant. (3) Results: Among the 240 eligible participants, the primary endpoint data were available for 100 participants randomly allocated to the mix-and-match group versus 99 participants randomly allocated to the homologous dose group. The mix-and-match regimen elicited significantly higher levels of neutralizing antibodies (median level of 96%, interquartile range (IQR) (95–97) versus median level of 94%, IQR (81–96) and anti-spike IgG antibodies (median level of 13,460, IQR (2557–29,930) versus median level of 1190, IQR (347–4964) compared to the homologous group. Accordingly, the percentage of subjects with a percentage of neutralizing antibodies > 90% was significantly higher in the mix-and-match group (90.0%) versus the homologous (60.6%). Interestingly, no severe events were reported within 30 days after the second dose of vaccination in both groups. (4) Conclusions: Our data showed the superiority of the mix-and-match CoronaVac/BNT162b2 vaccination compared to the CoronaVac/CoronaVac regimen in terms of immunogenicity, thus constituting a proof-of-concept study supporting the use of inactivated vaccines in a mix-and-match strategy while ensuring good immunogenicity and safety
Immunogenicity and Tolerance of BNT162b2 mRNA Vaccine in Allogeneic Hematopoietic Stem Cell Transplant Patients
Background: Allogeneic hematopoietic stem cell transplantation (ASCT) induces acquired immunodeficiency, potentially altering vaccine response. Herein, we aimed to explore the clinical tolerance and the humoral and cellular immune responses following anti-SARS-CoV-2 vaccination in ASCT recipients. Methods: A prospective, non-randomized, controlled study that involved 43 ASCT subjects and 31 healthy controls. Humoral response was investigated using the Elecsys® test anti-SARS-CoV-2. Cellular response was assessed using the QFN® SARS-CoV-2 test. The lymphocyte cytokine profile was tested using the LEGENDplex™ HU Th Cytokine Panel Kit (12-plex). Results: Adverse effects (AE) were observed in 69% of patients, encompassing pain at the injection site, fever, asthenia, or headaches. Controls presented more side effects like pain in the injection site and asthenia with no difference in the overall AE frequency. Both groups exhibited robust humoral and cellular responses. Only the vaccine transplant delay impacted the humoral response alongside a previous SARS-CoV-2 infection. Noteworthily, controls displayed a Th1 cytokine profile, while patients showed a mixed Th1/Th2 profile. Conclusions: Pfizer-BioNTech® anti-SARS-CoV-2 vaccination is well tolerated in ASCT patients, inducing robust humoral and cellular responses. Further exploration is warranted to understand the impact of a mixed cytokine profile in ASCT patients