383 research outputs found

    The Interiors of Giant Planets: Models and Outstanding Questions

    Full text link
    We know that giant planets played a crucial role in the making of our Solar System. The discovery of giant planets orbiting other stars is a formidable opportunity to learn more about these objects, what is their composition, how various processes influence their structure and evolution, and most importantly how they form. Jupiter, Saturn, Uranus and Neptune can be studied in detail, mostly from close spacecraft flybys. We can infer that they are all enriched in heavy elements compared to the Sun, with the relative global enrichments increasing with distance to the Sun. We can also infer that they possess dense cores of varied masses. The intercomparison of presently caracterised extrasolar giant planets show that they are also mainly made of hydrogen and helium, but that they either have significantly different amounts of heavy elements, or have had different orbital evolutions, or both. Hence, many questions remain and are to be answered for significant progresses on the origins of planets.Comment: 43 pages, 11 figures, 3 tables. To appear in Annual Review of Earth and Planetary Sciences, vol 33, (2005

    Anomalous material-dependent transport of focused, laser-driven proton beams.

    Get PDF
    Intense lasers can accelerate protons in sufficient numbers and energy that the resulting beam can heat materials to exotic warm (10 s of eV temperature) states. Here we show with experimental data that a laser-driven proton beam focused onto a target heated it in a localized spot with size strongly dependent upon material and as small as 35 μm radius. Simulations indicate that cold stopping power values cannot model the intense proton beam transport in solid targets well enough to match the large differences observed. In the experiment a 74 J, 670 fs laser drove a focusing proton beam that transported through different thicknesses of solid Mylar, Al, Cu or Au, eventually heating a rear, thin, Au witness layer. The XUV emission seen from the rear of the Au indicated a clear dependence of proton beam transport upon atomic number, Z, of the transport layer: a larger and brighter emission spot was measured after proton transport through the lower Z foils even with equal mass density for supposed equivalent proton stopping range. Beam transport dynamics pertaining to the observed heated spot were investigated numerically with a particle-in-cell (PIC) code. In simulations protons moving through an Al transport layer result in higher Au temperature responsible for higher Au radiant emittance compared to a Cu transport case. The inferred finding that proton stopping varies with temperature in different materials, considerably changing the beam heating profile, can guide applications seeking to controllably heat targets with intense proton beams

    First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands

    Get PDF
    Bestowing chirality to metals is central in fields such as heterogeneous catalysis and modern optics. Although the bulk phase of metals is symmetric, their surfaces can become chiral through adsorption of molecules. Interestingly, even achiral molecules can lead to locally chiral, though globally racemic, surfaces. A similar situation can be obtained for metal particles or clusters. Here we report the first separation of the enantiomers of a gold cluster protected by achiral thiolates, Au38(SCH2CH2Ph)24, achieved by chiral high-performance liquid chromatography. The chirality of the nanocluster arises from the chiral arrangement of the thiolates on its surface, forming 'staple motifs'. The enantiomers show mirror-image circular dichroism responses and large anisotropy factors of up to 4×10−3. Comparison with reported circular dichroism spectra of other Au38 clusters reveals that the influence of the ligand on the chiroptical properties is minor

    Consistency Analysis of Redundant Probe Sets on Affymetrix Three-Prime Expression Arrays and Applications to Differential mRNA Processing

    Get PDF
    Affymetrix three-prime expression microarrays contain thousands of redundant probe sets that interrogate different regions of the same gene. Differential expression analysis methods rarely consider probe redundancy, which can lead to inaccurate inference about overall gene expression or cause investigators to overlook potentially valuable information about differential regulation of variant mRNA products. We investigated the behaviour and consistency of redundant probe sets in a publicly-available data set containing samples from mouse brain amygdala and hippocampus and asked how applying filtering methods to the data affected consistency of results obtained from redundant probe sets. A genome-based filter that screens and groups probe sets according to their overlapping genomic alignments significantly improved redundant probe set consistency. Screening based on qualitative Present-Absent calls from MAS5 also improved consistency. However, even after applying these filters, many redundant probe sets showed significant fold-change differences relative to each other, suggesting differential regulation of alternative transcript production. Visual inspection of these loci using an interactive genome visualization tool (igb.bioviz.org) exposed thirty putative examples of differential regulation of alternative splicing or polyadenylation across brain regions in mouse. This work demonstrates how P/A-call and genome-based filtering can improve consistency among redundant probe sets while at the same time exposing possible differential regulation of RNA processing pathways across sample types

    Low-Bandwidth and Non-Compute Intensive Remote Identification of Microbes from Raw Sequencing Reads

    Get PDF
    Cheap high-throughput DNA sequencing may soon become routine not only for human genomes but also for practically anything requiring the identification of living organisms from their DNA: tracking of infectious agents, control of food products, bioreactors, or environmental samples. We propose a novel general approach to the analysis of sequencing data in which the reference genome does not have to be specified. Using a distributed architecture we are able to query a remote server for hints about what the reference might be, transferring a relatively small amount of data, and the hints can be used for more computationally-demanding work. Our system consists of a server with known reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references known to the server. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients, one of them running in a web browser, in order to demonstrate that gigabytes of raw sequencing reads of unknown origin could be identified without the need to transfer a very large volume of data, and on modestly powered computing devices. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data is available at http://bit.ly/1aURxkc

    Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy

    Get PDF
    We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin

    Effect of solution saturation state and temperature on diopside dissolution

    Get PDF
    Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175°C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175°C. At 175°C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface. Fit to the experimental data yields [Formula: see text] where the Mg-H exchange coefficient, n = 1.39, the apparent activation energy, E(a )= 332 kJ mol(-1), and the apparent rate constant, k = 10(41.2 )mol diopside cm(-2 )s(-1). Fits to the data with the pit nucleation model suggest that diopside dissolution proceeds through retreat of steps developed by nucleation of pits created homogeneously at the mineral surface or at defect sites, where homogeneous nucleation occurs at lower degrees of saturation than defect-assisted nucleation. Rate expressions for each mechanism (i) were fit to [Formula: see text] where the step edge energy (α) for homogeneously nucleated pits were higher (275 to 65 mJ m(-2)) than the pits nucleated at defects (39 to 65 mJ m(-2)) and the activation energy associated with the temperature dependence of site density and the kinetic coefficient for homogeneously nucleated pits (E(b-homogeneous )= 2.59 × 10(-16 )mJ K(-1)) were lower than the pits nucleated at defects (E(b-defect assisted )= 8.44 × 10(-16 )mJ K(-1))

    Contributions Made by CDC25 Phosphatases to Proliferation of Intestinal Epithelial Stem and Progenitor Cells

    Get PDF
    The CDC25 protein phosphatases drive cell cycle advancement by activating cyclin-dependent protein kinases (CDKs). Humans and mice encode three family members denoted CDC25A, -B and -C and genes encoding these family members can be disrupted individually with minimal phenotypic consequences in adult mice. However, adult mice globally deleted for all three phosphatases die within one week after Cdc25 disruption. A severe loss of absorptive villi due to a failure of crypt epithelial cells to proliferate was observed in the small intestines of these mice. Because the Cdc25s were globally deleted, the small intestinal phenotype and loss of animal viability could not be solely attributed to an intrinsic defect in the inability of small intestinal stem and progenitor cells to divide. Here, we report the consequences of deleting different combinations of Cdc25s specifically in intestinal epithelial cells. The phenotypes arising in these mice were then compared with those arising in mice globally deleted for the Cdc25s and in mice treated with irinotecan, a chemotherapeutic agent commonly used to treat colorectal cancer. We report that the phenotypes arising in mice globally deleted for the Cdc25s are due to the failure of small intestinal stem and progenitor cells to proliferate and that blocking cell division by inhibiting the cell cycle engine (through Cdc25 loss) versus by inducing DNA damage (via irinotecan) provokes a markedly different response of small intestinal epithelial cells. Finally, we demonstrate that CDC25A and CDC25B but not CDC25C compensate for each other to maintain the proliferative capacity of intestinal epithelial stem and progenitor cells

    Identification of a myometrial molecular profile for dystocic labor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common indication for cesarean section (CS) in nulliparous women is dystocia secondary to ineffective myometrial contractility. The aim of this study was to identify a molecular profile in myometrium associated with dystocic labor.</p> <p>Methods</p> <p>Myometrial biopsies were obtained from the upper incisional margins of nulliparous women undergoing lower segment CS for dystocia (n = 4) and control women undergoing CS in the second stage who had demonstrated efficient uterine action during the first stage of labor (n = 4). All patients were in spontaneous (non-induced) labor and had received intrapartum oxytocin to accelerate labor. RNA was extracted from biopsies and hybridized to Affymetrix HuGene U133A Plus 2 microarrays. Internal validation was performed using quantitative SYBR Green Real-Time PCR.</p> <p>Results</p> <p>Seventy genes were differentially expressed between the two groups. 58 genes were down-regulated in the dystocia group. Gene ontology analysis revealed 12 of the 58 down-regulated genes were involved in the immune response. These included (ERAP2, (8.67 fold change (FC)) HLA-DQB1 (7.88 FC) CD28 (2.60 FC), LILRA3 (2.87 FC) and TGFBR3 (2.1 FC)) Hierarchical clustering demonstrated a difference in global gene expression patterns between the samples from dystocic and non-dystocic labours. RT-PCR validation was performed on 4 genes ERAP2, CD28, LILRA3 and TGFBR3</p> <p>Conclusion</p> <p>These findings suggest an underlying molecular basis for dystocia in nulliparous women in spontaneous labor. Differentially expressed genes suggest an important role for the immune response in dystocic labor and may provide important indicators for new diagnostic assays and potential intrapartum therapeutic targets.</p
    corecore