7,970 research outputs found
On large deviation regimes for random media models
The focus of this article is on the different behavior of large deviations of
random subadditive functionals above the mean versus large deviations below the
mean in two random media models. We consider the point-to-point first passage
percolation time on and a last passage percolation time
. For these functionals, we have and
. Typically, the large deviations for such
functionals exhibits a strong asymmetry, large deviations above the limiting
value are radically different from large deviations below this quantity. We
develop robust techniques to quantify and explain the differences.Comment: Published in at http://dx.doi.org/10.1214/08-AAP535 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
A theoretical analysis of the electromagnetic environment of the AS330 super Puma helicopter external and internal coupling
Numerical techniques such as Finite Difference Time Domain (FDTD) computer programs, which were first developed to analyze the external electromagnetic environment of an aircraft during a wave illumination, a lightning event, or any kind of current injection, are now very powerful investigative tools. The program called GORFF-VE, was extended to compute the inner electromagnetic fields that are generated by the penetration of the outer fields through large apertures made in the all metallic body. Then, the internal fields can drive the electrical response of a cable network. The coupling between the inside and the outside of the helicopter is implemented using Huygen's principle. Moreover, the spectacular increase of computer resources, as calculations speed and memory capacity, allows the modellization structures as complex as these of helicopters with accuracy. This numerical model was exploited, first, to analyze the electromagnetic environment of an in-flight helicopter for several injection configurations, and second, to design a coaxial return path to simulate the lightning aircraft interaction with a strong current injection. The E field and current mappings are the result of these calculations
On large deviations for the parabolic Anderson model
The focus of this article is on the different behavior of large deviations of random functionals associated with the parabolic Anderson model above the mean versus large deviations below the mean. The functionals we treat are the solution u(x, t) to the spatially discrete parabolic Anderson model and a functional A
n
which is used in analyzing the a.s. Lyapunov exponent for u(x, t). Both satisfy a “law of large numbers”, with
and
. We then think of αn and λ(κ)t as being the mean of the respective quantities A
n
and log u(t, x). Typically, the large deviations for such functionals exhibits a strong asymmetry; large deviations above the mean take on a different order of magnitude from large deviations below the mean. We develop robust techniques to quantify and explain the differences
Late onset tacrolimus-induced life-threatening polyneuropathy in a kidney transplant recipient patient
A 59-year-old kidney recipient was diagnosed with a late onset of severe chronic inflammatory demyelinating polyradiculoneuropathy and almost fully recovered after stopping tacrolimus and one course of intravenous immunoglobulin treatment. Unique features of this patient are the unusually long time lapse between initiation of tacrolimus and the adverse effect (10 years), a strong causality link and several arguments pointing toward an inflammatory etiology. When facing new neurological signs and symptoms in graft recipients, it is important to bear in mind the possibility of a drug-induced adverse event. Discontinuation of the suspect drug and immunomodulation are useful treatment options
Timescale for equilibration of N/Z gradients in dinuclear systems
Equilibration of N/Z in binary breakup of an excited and transiently deformed
projectile-like fragment (PLF*), produced in peripheral collisions of 64Zn +
27Al, 64Zn, 209Bi at E/A = 45 MeV, is examined. The composition of emitted
light fragments (3<=Z<=6) changes with the decay angle of the PLF*. The most
neutron-rich fragments observed are associated with a small rotation angle. A
clear target dependence is observed with the largest initial N/Z correlated
with the heavy, neutron-rich target. Using the rotation angle as a clock, we
deduce that N/Z equilibration persists for times as long as 3-4 zs (1zs = 1 x
10^-21 s = 300 fm/c). The rate of N/Z equilibration is found to depend on the
initial neutron gradient within the PLF*.Comment: 6 pages, 4 figure
OH 1720 MHz Masers in Supernova Remnants --- C-Shock Indicators
Recent observations show that the OH 1720 MHz maser is a powerful probe of
the shocked region where a supernova remnant strikes a molecular cloud. We
perform a thorough study of the pumping of this maser and find tight
constraints on the physical conditions needed for its production. The presence
of the maser implies moderate temperatures (50 -- 125 K) and densities (), and OH column densities of order . We show
that these conditions can exist only if the shocks are of C-type. J-shocks fail
by such a wide margin that the presence of this maser could become the most
powerful indicator of C-shocks. These conditions also mean that the 1720 MHz
maser will be inherently weak compared to the other ground state OH masers. All
the model predictions are in good agreement with the observations.Comment: 16 pages, 5 Postscript figures (included), uses aaspp4.sty. To appear
in the Astrophysical Journa
Super-transient scaling in time-delay autonomous Boolean network motifs
Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experi- mentally measured transient distributions
Genomic Degeneration and Reduction in the Fish Pathogen \u3ci\u3eMycobacterium shottsi\u3c/i\u3e
Mycobacterium shottsii is a dysgonic, nonpigmented mycobacterium originally isolated from diseased striped bass (Morone saxatilis) in the Chesapeake Bay, USA. Genomic analysis reveals that M. shottsii is a Mycobacterium ulcerans/Mycobacterium marinum clade (MuMC) member, but unlike the superficially similar M. pseudoshottsii, also isolated from striped bass, it is not an M. ulcerans ecovar, instead belonging to a transitional group of strains basal to proposed “Aronson” and “M” lineages. Although phylogenetically distinct from the human pathogen M. ulcerans, the M. shottsii genome shows parallel but nonhomologous genomic degeneration, including massive accumulation of pseudogenes accompanied by proliferation of unique insertion sequences (ISMysh01, ISMysh03), large-scale deletions, and genomic reorganization relative to typical M. marinum strains. Coupled with its observed ecological characteristics and loss of chromogenicity, the genomic structure of M. shottsii is suggestive of evolution toward a state of obligate pathogenicity, as observed for other Mycobacterium spp., including M. ulcerans, M. tuberculosis, and M. leprae
Newborns' preference for face-relevant stimuli: effects of contrast polarity
There is currently no agreement as to how specific or general are the mechanisms underlying newborns' face preferences. We address this issue by manipulating the contrast polarity of schematic and naturalistic face-related images and assessing the preferences of newborns. We find that for both schematic and naturalistic face images, the contrast polarity is important. Newborns did not show a preference for an upright face-related image unless it was composed of darker areas around the eyes and mouth. This result is consistent with either sensitivity to the shadowed areas of a face with overhead (natural) illumination and/or to the detection of eye contact
Polarization instabilities in a two-photon laser
We describe the operating characteristics of a new type of quantum oscillator
that is based on a two-photon stimulated emission process. This two-photon
laser consists of spin-polarized and laser-driven K atoms placed in a
high-finesse transverse-mode-degenerate optical resonator, and produces a beam
with a power of 0.2 W at a wavelength of 770 nm. We observe
complex dynamical instabilities of the state of polarization of the two-photon
laser, which are made possible by the atomic Zeeman degeneracy. We conjecture
that the laser could emit polarization-entangled twin beams if this degeneracy
is lifted.Comment: Accepted by Physical Review Letters. REVTeX 4 pages, 4 EPS figure
- …