3,702 research outputs found

    Effect of Ionic Currents on Heat-Transfer

    Get PDF

    Dynamic Role-Based Access Control for Decentralized Applications

    Full text link
    Access control management is an integral part of maintaining the security of an application. Although there has been significant work in the field of cloud access control mechanisms, however, with the advent of Distributed Ledger Technology (DLT), on-chain access control management frameworks hardly exist. Existing access control management mechanisms are tightly coupled with the business logic, resulting in governance issues, non-coherent with existing Identity Management Solutions, low security, and compromised usability. We propose a novel framework to implement dynamic role-based access control for decentralized applications (dApps). The framework allows for managing access control on a dApp, which is completely decoupled from the business application and integrates seamlessly with any dApps. The smart contract architecture allows for the independent management of business logic and execution of access control policies. It also facilitates secure, low cost, and a high degree of flexibility of access control management. The proposed framework promotes decentralized governance of access control policies and efficient smart contract upgrades. We also provide quantitative and qualitative metrics for the efficacy and efficiency of the framework. Any Turing complete smart contract programming language is an excellent fit to implement the framework. We expect this framework to benefit enterprise and non-enterprise dApps and provide greater access control flexibility and effective integration with traditional and state of the art identity management solutions.Comment: 6 pages, 3 figures, 1 tabl

    Field Measurement of Soil Surface Chemical Transport Properties for Comparison of Management Zones

    Get PDF
    Management of chemicals in soil is important, yet the complexity of field soils limits prediction of management effects on transport. To date, few methods have been available for field measurement of chemical transport properties, but a recently developed dripper–time domain reflectometry technique allows rapid collection of data for determining these properties. The objective of this work was to apply this technique for comparison of chemical transport properties for different soil management zones. Experiments were conducted comparing four interrow management zones: no-till nontrafficked, no-till trafficked, chisel plow nontrafficked, and chisel plow trafficked. Drip emitters were positioned at 12 locations in each zone and used to apply water followed by a step input of CaCl2 tracer solution. Breakthrough curves were measured via electrical conductivity with time domain reflectometry probes. The mobile–immobile model was fit to the breakthrough curves to determine chemical transport properties. Mean chemical transport properties were 0.34, 0.11 h−1, 10 cm h−1, 164 cm2 h−1, and 5 cm, for the immobile water fraction, mass exchange coefficient, average pore-water velocity, mobile dispersion coefficient, and dispersivity, respectively. All five properties showed significant differences between management zones. Differences in mass exchange and mobile dispersion coefficients coincided with differences in tillage, while differences in mean pore water velocities coincided with differences in traffic. The immobile water fraction was largest for the no-till nontrafficked zone. These results represent one of very few reports for field measurement of chemical transport properties and the first application of this approach for comparison of chemical transport properties across management zones

    B \to K(K^*) missing energy in Unparticle physics

    Full text link
    In the present work we study the effects of an unparticle \unpart as the possible source of missing energy in the decay BK(K)+missingenergyB \to K (K^*) + {\rm missing energy}. We find that the dependence of the differential branching ratio on the KK(KK^*)-meson's energy in the presence of the vector unparticle operators is very distinctive from that of the SM. Moreover, in using the existing upper bound on BK(K)+missingenergyB \to K (K^*) + {\rm missing energy} decays, we have been able to put more stringent constraints on the parameters of unparticle stuff.Comment: 13 pages, 5 figure

    Pengaruh Penambahan Berbagai Jenis Starter Pada Proses Pengomposan Eceng Gondok

    Get PDF
    Research about ???The Effect of Addition of Various Types of Starter Against The Water Hyacinth Plant Eichornia crassipes (Mart.) Solms.??? This study aims to determine the effect of types starter in the composting process water hyacinth plants and to assess changes in pH, temperature, volume shrinkage, rate of decomposition, the color of compost and C:N ratio during the composting process water hyacinth plant. The first treatment that is P0 (water hyacinth plant a total of (3 kg) without the addition of starter) treatment both ie P1 (water hyacinth plant (3 kg) + 10% vermicompost) treatment third is P2 (water hyacinth plant (3 kg) + 10% cow manure) and the treatment of the four P3 (water hyacinth plant (3kg) + 5% vermicompost + 5% cow manure). Those parameters observed were pH, temperature, volume shrinkage, rate of decomposition, the color of compost and C/N ratio. The results showed starter administration significantly affected the rate of decomposition in treatment P1 (0,08 kg/10 days ), P2 (0.04 kg /10 days) and P3 (0.1 kg/10 days). The color change occurs in all treatments where early brownish color changed to brown -black at the end of the composting process. Treatment of P1 provides the most excellent effect for the parameters pH (6.73), temperature (33,3oC), volume shrinkage (7,3cm3), weight (0,5kg), and parameter C / N ratio (23%).\ud \ud Key words : Bio-activator, Vermicompost, Decomposition, Hyacint

    A Light Sterile Neutrino in the TopFlavor Model

    Full text link
    A scenario based on the TopFlavor model is presented to explain the origin of a light sterile neutrino as indicated by all combined neutrino oscillation experiments. The model is phenomenologically well motivated and compatible with all available low-energy data. The derived nuetrino mass matrix can qualitatively explain the observed hierarchy in the neutrino mass splittings as indicated by the neutrino oscillation data. Numerical results are obtained for special cases.Comment: Plain Latex file, 12 page

    Revising Neutrino Oscillation Parameter Space With Direct Flavor-Changing Interactions

    Get PDF
    We formulate direct, neutrino flavor-changing interactions in a framework that fits smoothly with the parameterization of two-and three-state mixing of massive neutrino states. We show that even small direct interaction strengths could have important consequences for the interpretation of currently running and proposed oscillation experiments. The oscillation amplitude and the borders of the allowed regions in two-and three-flavor mixing parameter space can be sensitieve to the presence of direct interactions when the transition probability is small. We use extensively the high sensitivity of the NOMAD experiment to illustrate potentially large effects from small, direct flavor violation. In the purely leptonic sector, we find that the clean muon neutrino and electron neutrino beams from a muon collider could provide the sharpest tests of direct flavor violation.Comment: 16 pages, 10 figure

    Short-Duration Chickpea Technology: Enabling Legumes Revolution in Andhra Pradesh, India, Research Report No. 23

    Get PDF
    This study presents the success story of the adoption and diffusion of improved chickpea short duration varieties in southern India. The experience in the state of Andhra Pradesh particularly exemplifies evidences that adoption of technologies significantly enhanced agricultural productivity and total welfare gains in both traditional and non-traditional chickpea growing regions. As part of a global initiative to assess the impacts of legumes research in the CGIAR, this study supported by the Standing Panel on Impact Assessment (SPIA) contributes to generating more reliable information on key aspects of adoption and diffusion as well as gaining better insights and deeper understanding of the impacts of varietal change..

    Unparticle Physics in Single Top Signals

    Get PDF
    We study the single production of top quarks in e+e,epe^+e^-, ep and pppp collisions in the context of unparticle physics through the Flavor Violating (FV) unparticle vertices and compute the total cross sections for single top production as functions of scale dimension d_{\U}. We find that among all, LHC is the most promising facility to probe the unparticle physics via single top quark production processes.Comment: 14 pages, 10 figure

    A peculiar multi-wavelength flare in the Blazar 3C 454.3

    Full text link
    The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same time. Optical polarization measurements showed dramatic changes during the flare, with a strong anti-correlation between optical flux and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining phase of the flare. The flare was accompanied by large rapid swings in polarization angle of ~ 170 degree. This combination of behaviors appear to be unique. We have cm-band radio data during the same period but they show no correlation with variations at higher frequencies. Such peculiar behavior may be explained using jet models incorporating fully relativistic effects with a dominant source region moving along a helical path or by a shock-in-jet model incorporating three-dimensional radiation transfer if there is a dominant helical magnetic field. We find that spectral energy distributions at different times during the flare can be fit using modified one-zone models where only the magnetic field strength and particle break frequencies and normalizations need change. An optical spectrum taken at nearly the same time provides an estimate for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two weaker flares seen during the 200\sim 200 d span over which multi-band data are available. In one of them, the V and J bands appear to lead the γ\gamma-ray and X-ray bands by a few days; in the other, all variations are simultaneous.Comment: 11 pages, 4 figures, 2 tables; MNRAS in pres
    corecore