2,022 research outputs found
Heuristic Spike Sorting Tuner (HSST), a framework to determine optimal parameter selection for a generic spike sorting algorithm
Extracellular microelectrodes frequently record neural activity from more than one neuron in the vicinity of the electrode. The process of labeling each recorded spike waveform with the identity of its source neuron is called spike sorting and is often approached from an abstracted statistical perspective. However, these approaches do not consider neurophysiological realities and may ignore important features that could improve the accuracy of these methods. Further, standard algorithms typically require selection of at least one free parameter, which can have significant effects on the quality of the output. We describe a Heuristic Spike Sorting Tuner (HSST) that determines the optimal choice of the free parameters for a given spike sorting algorithm based on the neurophysiological qualification of unit isolation and signal discrimination. A set of heuristic metrics are used to score the output of a spike sorting algorithm over a range of free parameters resulting in optimal sorting quality. We demonstrate that these metrics can be used to tune parameters in several spike sorting algorithms. The HSST algorithm shows robustness to variations in signal to noise ratio, number and relative size of units per channel. Moreover, the HSST algorithm is computationally efficient, operates unsupervised, and is parallelizable for batch processing
Local availability and long-range trade: the worked stone assemblage
Inter disciplinary study of major excavation assemblage from Norse settlement site in Orkney. Combines methodological and typological developments with scientific discussion
Microscopic analysis of multipole susceptibility of actinide dioxides: A scenario of multipole ordering in AmO
By evaluating multipole susceptibility of a seven-orbital impurity Anderson
model with the use of a numerical renormalization group method, we discuss
possible multipole states of actinide dioxides at low temperatures. In
particular, here we point out a possible scenario for multipole ordering in
americium dioxide. For Am ion with five electrons, it is considered
that the ground state is doublet and the first excited state is
quartet, but we remark that the ground state is easily
converted due to the competition between spin-orbit coupling and Coulomb
interactions. Then, we find that the quartet can be the ground
state of AmO even for the same crystalline electric field potential. In the
case of quartet ground state, the numerical results suggest that
high-order multipoles such as quadrupole and octupole can be relevant to
AmO.Comment: 8 pages, 4 figures. To appear in Phys. Rev.
Parents' involvement in child care: do parental and work identities matter?
The current study draws on identity theory to explore mothers' and fathers' involvement in childcare. It examined the relationships between the salience and centrality of individuals’ parental and work-related identities and the extent to which they are involved in various forms of childcare. A sample of 148 couples with at least one child aged 6 years or younger completed extensive questionnaires. As hypothesized, the salience and centrality of parental identities were positively related to mothers' and fathers' involvement in childcare. Moreover, maternal identity salience was negatively related to fathers' hours of childcare and share of childcare tasks. Finally, work hours mediated the negative relationships between the centrality of work identities and time invested in childcare, and gender moderated this mediation effect. That is, the more central a mother's work identity, the more hours she worked for pay and the fewer hours she invested in childcare. These findings shed light on the role of parental identities in guiding behavioral choices, and attest to the importance of distinguishing between identity salience and centrality as two components of self-structure
Critical Exponent for the Density of Percolating Flux
This paper is a study of some of the critical properties of a simple model
for flux. The model is motivated by gauge theory and is equivalent to the Ising
model in three dimensions. The phase with condensed flux is studied. This is
the ordered phase of the Ising model and the high temperature, deconfined phase
of the gauge theory. The flux picture will be used in this phase. Near the
transition, the density is low enough so that flux variables remain useful.
There is a finite density of finite flux clusters on both sides of the phase
transition. In the deconfined phase, there is also an infinite, percolating
network of flux with a density that vanishes as . On
both sides of the critical point, the nonanalyticity in the total flux density
is characterized by the exponent . The main result of this paper is
a calculation of the critical exponent for the percolating network. The
exponent for the density of the percolating cluster is . The specific heat exponent and the crossover exponent
can be computed in the -expansion. Since , the variation in the separate densities is much more rapid than
that of the total. Flux is moving from the infinite cluster to the finite
clusters much more rapidly than the total density is decreasing.Comment: 20 pages, no figures, Latex/Revtex 3, UCD-93-2
Universal Formulae for Percolation Thresholds
A power law is postulated for both site and bond percolation thresholds. The
formula writes , where is the space
dimension and the coordination number. All thresholds up to are found to belong to only three universality classes. For first two
classes for site dilution while for bond dilution. The last one
associated to high dimensions is characterized by for both sites and
bonds. Classes are defined by a set of value for . Deviations
from available numerical estimates at are within and
for high dimensional hypercubic expansions at . The
formula is found to be also valid for Ising critical temperatures.Comment: 11 pages, latex, 3 figures not include
Heuristic Spike Sorting Tuner (HSST), a framework to determine optimal parameter selection for a generic spike sorting algorithm
Extracellular microelectrodes frequently record neural activity from more than one neuron in the vicinity of the electrode. The process of labeling each recorded spike waveform with the identity of its source neuron is called spike sorting and is often approached from an abstracted statistical perspective. However, these approaches do not consider neurophysiological realities and may ignore important features that could improve the accuracy of these methods. Further, standard algorithms typically require selection of at least one free parameter, which can have significant effects on the quality of the output. We describe a Heuristic Spike Sorting Tuner (HSST) that determines the optimal choice of the free parameters for a given spike sorting algorithm based on the neurophysiological qualification of unit isolation and signal discrimination. A set of heuristic metrics are used to score the output of a spike sorting algorithm over a range of free parameters resulting in optimal sorting quality. We demonstrate that these metrics can be used to tune parameters in several spike sorting algorithms. The HSST algorithm shows robustness to variations in signal to noise ratio, number and relative size of units per channel. Moreover, the HSST algorithm is computationally efficient, operates unsupervised, and is parallelizable for batch processing
Force-induced desorption of a linear polymer chain adsorbed on an attractive surface
We consider a model of self-avoiding walk on a lattice with on-site repulsion
and an attraction for every vertex of the walk visited on the surface to study
force-induced desorption of a linear polymer chain adsorbed on an attractive
surface and use the exact enumeration technique for analyzing how the critical
force for desorption depends on the temperature. The curve
gives the boundary separating the adsorbed phase from the desorbed phase. Our
results show that in two dimensions where surface is a line the force
increases monotonically as temperature is lowered and becomes almost constant
at very low temperatures. In case of three-dimensions we, however, find
re-entrance, i. e. goes through a maximum as temperature is lowered.
The behaviour of the polymer chain at different values of temperature and force
is examined by calculating the probability distribution of the height from the
surface of the vertex at which external force is applied.Comment: Preprint 15 pages with 8figures and two tables. The file table-2d.ps
and table-3d.ps lists C_N(Ns,h) for given N with all possible Ns and h in two
and three dimension
- …