81 research outputs found

    Stable thrombus formation on irradiated microvascular endothelial cells under pulsatile flow: Pre-testing annexin V-thrombin conjugate for treatment of brain arteriovenous malformations

    Full text link
    © 2018 Elsevier Ltd Background: Our goal is to develop a vascular targeting treatment for brain arteriovenous malformations (AVMs). Externalized phosphatidylserine has been established as a potential biomarker on the endothelium of irradiated AVM blood vessels. We hypothesize that phosphatidylserine could be selectively targeted after AVM radiosurgery with a ligand-directed vascular targeting agent to achieve localized thrombosis and rapid occlusion of pathological AVM vessels. Objective: The study aim was to establish an in vitro parallel-plate flow chamber to test the efficacy of a pro-thrombotic conjugate targeting phosphatidylserine. Methods: Conjugate was prepared by Lys-Lys cross-linking of thrombin with the phosphatidylserine-targeting ligand, annexin V. Cerebral microvascular endothelial cells were irradiated (5, 15, and 25 Gy) and after 1 or 3 days assembled in a parallel-plate flow chamber containing whole human blood and conjugate (1.25 or 2.5 μg/mL). Confocal microscopy was used to assess thrombus formation after flow via binding and aggregation of fluorescently-labelled platelets and fibrinogen. Results and conclusions: The annexin V-thrombin conjugate induced rapid thrombosis (fibrin deposition) on irradiated endothelial cells under shear stress in the parallel-plate flow device. Unconjugated, non-targeting thrombin did not induce fibrin deposition. A synergistic interaction between radiation and conjugate dose was observed. Thrombosis was greatest at the highest combined doses of radiation (25 Gy) and conjugate (2.5 μg/mL). The parallel-plate flow system provides a rapid method to pre-test pro-thrombotic vascular targeting agents. These findings validate the translation of the annexin V-thrombin conjugate to pre-clinical studies

    The influence of impact-based severe weather warnings on risk perceptions and intended protective actions

    Get PDF
    This paper presents the results of an online survey of the New Zealand public (n = 1364), conducted in 2015, that tested the influence of impact-based severe weather warnings on risk perceptions and intended protective actions. We used a hypothetical severe weather event involving strong winds, with 50% of participants receiving an impact-based warning, and 50% receiving a more traditional phenomenon-based warning (which in this case is when the wind speed is expected to be higher than a given number). Our results indicate that impact-based warnings may be more effective than phenomenon-based warnings in influencing the recipient's perception of the hazardous event (their sense of threat, concern, and understanding of the potential impacts), but this does not translate to a higher level of action. Characteristics of gender, age, and location of residence were also influences on risk perceptions and intended actions. However, experience with having been affected by strong winds in the past was not a strong influence on intending to respond. Our findings support the inclusion of information about hazards, impacts, and ‘what to do’ information in a warning message

    BLUF Domain Function Does Not Require a Metastable Radical Intermediate State

    Get PDF
    BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto–enol tautomerization induced by electronic excitation of the flavin ring are considered

    Porosity of closed carbon nanotubes compressed using hydraulic pressure

    Get PDF
    Experimental data of nitrogen adsorption (T = 77.3 K) from gaseous phase measured on commercial closed carbon nanotubes are presented. Additionally, we show the results of N2 adsorption on compressed (using hydraulic press) CNTs. In order to explain the experimental observations the results of GCMC simulations of N2 adsorption on isolated or bundled multi-walled closed nanotubes (four models of bundles) are discussed. We show that the changes of the experimental adsorption isotherms are related to the compression of the investigated adsorbents. They are qualitatively similar to the theoretical observations. Taking into account all results it is concluded that in the "architecture" of nanotubes very important role has been played by isolated nanotubes

    Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis

    Get PDF
    For more than a decade, researchers have been trying to develop non-invasive imaging techniques for the in vivo measurement of viable pancreatic beta cells. However, in spite of intense research efforts, only one tracer for positron emission tomography (PET) imaging is currently under clinical evaluation. To many diabetologists it may remain unclear why the imaging world struggles to develop an effective method for non-invasive beta cell imaging (BCI), which could be useful for both research and clinical purposes. Here, we provide a concise overview of the obstacles and challenges encountered on the way to such BCI, in both native and transplanted islets. We discuss the major difficulties posed by the anatomical and cell biological features of pancreatic islets, as well as the chemical and physical limits of the main imaging modalities, with special focus on PET, SPECT and MRI. We conclude by indicating new avenues for future research in the field, based on several remarkable recent results
    • …
    corecore