703 research outputs found

    Space environment: A new dimension in the preparation of unique solids

    Get PDF
    The preparation of solids, particularly electronic solids in space is discussed. Particular attention is given to the effect of non-gravational environments on the development of homogeneous materials that cannot be manufactured on earth

    Crystal growth of device quality GaAs in space

    Get PDF
    It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail

    ICDAR2003 Page Segmentation Competition

    No full text
    There is a significant need to objectively evaluate layout analysis (page segmentation and region classification) methods. This paper describes the Page Segmentation Competition (modus operandi, dataset and evaluation criteria) held in the context of ICDAR2003 and presents the results of the evaluation of the candidate methods. The main objective of the competition was to evaluate such methods using scanned documents from commonly-occurring publications. The results indicate that although methods seem to be maturing, there is still a considerable need to develop robust methods that deal with everyday documents

    Growth of GaAs crystals from the melt in a partially confined configuration

    Get PDF
    The experimental approach was directed along two main goals: (1) the implementation of an approach to melt growth in a partially confined configuration; and (2) the investigation of point defect interaction and electronic characteristics as related to thermal treatment following solidification and stoichiometry. Significant progress was made along both fronts. Crystal growth of GaAs in triangular ampuls was already carried out successfully and consistent with the model. In fact, pronounced surface tension phenomena which cannot be observed in ordinary confinement system were identified and should premit the assessment of Maragoni effects prior to space processing. Regarding thermal treatment, it was discovered that the rate of cooling from elevated temperatures is primarily responsible for a whole class of defect interactions affecting the electronic characteristics of GaAs and that stoichiometry plays a critical role in the quality of GaAs

    Crystal growth of device quality GaAs in space

    Get PDF
    The program on Crystal Growth of Device Quality GaAs in Space was initiated in 1977. The initial stage covering 1977 to 1984 was devoted strictly to ground-based research. By 1985 the program had evolved into its next logical stage aimed at space growth experiments; however, since the Challenger disaster, the program has been maintained as a ground-based program awaiting activation of experimentation in space. The overall prgram has produced some 80 original scientific publications on GaAs crystal growth, crystal characterization, and new approaches to space processing. Publication completed in the last three years are listed. Their key results are outlined and discussed in the twelve publications included as part of the report

    Crystal growth of device quality GaAs in space

    Get PDF
    The apparatus and techniques used in effort to determine the relationships between crystal growth and electronic properties are described with emphasis on electroepitaxy and melt-grown gallium aresenide crystal. Applications of deep level transient spectroscopy, derivative photocapitance spectroscopy, and SEM-cathodoluminescene in characterizing wide bandgap semiconductors; determining photoionization in MOS, Schottky barriers, and p-n junctions; and for identifying inhomogeneities are examined, as well as the compensation of indium phosphide

    Crystal growth of device quality GaAs in space

    Get PDF
    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance

    Indium antimonide crystal growth experiment M562

    Get PDF
    It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach

    Solidification (crystal growth) in the presence of gravitational forces

    Get PDF
    The surface tension behavior of doped and undoped InSb melts was investigated as well as their temperature and composition dependence. Surface tension in InSb melts was determined using the sessile-drop technique covering the temperature range from 530 C to 880 C. A linear regression of the data obtained shows that the temperature dependence of sigma is 392- (T-530) x (7000) plus or minus 10 dyne/cm. The d sigma/d Tau for intrinsics InSb is less than that previously reported. On the basis of the surface tension data obtained, it is concluded that surface tension induced convective flow velocities in InSb under reduced gravity conditions range from zero to at most 1 cm/sec. Accordingly, no interference with dopant segregation can be expected during growth in space because the momentum boundary layer (at the crystal melt interface) associated with any Marangoni-type convective flows would, at the given growth rate, be significantly larger than the predicted diffusion boundary layer thickness

    Early stages of the oxidation of metal surfaces

    Get PDF
    Photoemission cross sections were calculated for the ZnO4(-6) cluster using the self consistent-chi alpha- scattered wave theory to display the main features of the ultraviolet and X-ray photoemission data from ZnO. A solid model is suggested for an absolute photoemission intensity comparison resulting in chi alpha intensities which are roughly 70% of the experimental values. Together with the experimental data, the calculations allow a complete determination of the electronic structure of a ZnO surface
    corecore