16 research outputs found

    The Close AGN Reference Survey (CARS) A massive multi-phase outflow impacting the edge-on galaxy HE 1353-1917

    Get PDF
    Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Open Access funding provided by Max Planck Society.Context. Galaxy-wide outflows driven by star formation and/or an active galactic nucleus (AGN) are thought to play a crucial rule in the evolution of galaxies and the metal enrichment of the inter-galactic medium. Direct measurements of these processes are still scarce and new observations are needed to reveal the nature of outflows in the majority of the galaxy population. Aims. We combine extensive, spatially-resolved, multi-wavelength observations, taken as part of the Close AGN Reference Survey (CARS), for the edge-on disc galaxy HE 1353-1917 in order to characterise the impact of the AGN on its host galaxy via outflows and radiation. Methods. Multi-color broad-band photometry was combined with spatially-resolved optical, near-infrared (NIR) and sub-mm and radio observations taken with the Multi-Unit Spectroscopy Explorer (MUSE), the Near-infrared Integral Field Spectrometer (NIFS), the Atacama Large Millimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to map the physical properties and kinematics of the multi-phase interstellar medium. Results. We detect a biconical extended narrow-line region ionised by the luminous AGN orientated nearly parallel to the galaxy disc, extending out to at least 25 kpc. The extra-planar gas originates from galactic fountains initiated by star formation processes in the disc, rather than an AGN outflow, as shown by the kinematics and the metallicity of the gas. Nevertheless, a fast, multi-phase, AGN-driven outflow with speeds up to 1000 km s(-1) is detected close to the nucleus at 1 kpc distance. A radio jet, in connection with the AGN radiation field, is likely responsible for driving the outflow as confirmed by the energetics and the spatial alignment of the jet and multi-phase outflow. Evidence for negative AGN feedback suppressing the star formation rate (SFR) is mild and restricted to the central kpc. But while any SFR suppression must have happened recently, the outflow has the potential to greatly impact the future evolution of the galaxy disc due to its geometrical orientation. Conclusions.. Our observations reveal that low-power radio jets can play a major role in driving fast, multi-phase, galaxy-scale outflows even in radio-quiet AGN. Since the outflow energetics for HE 1353-1917 are consistent with literature, scaling relation of AGN-driven outflows the contribution of radio jets as the driving mechanisms still needs to be systematically explored.© B. Husemann et al. 2019We thank the referee for providing very valuable comments, which significantly improved the quality of the manuscript. MK acknowledges support from DLR grant 50OR1802. GRT acknowledges support from the NASA through Einstein Postdoctoral Fellowship Award Number PF-150128, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. MG is supported by the Lyman Spitzer Jr. Fellowship (Princeton University) and by NASA Chandra grants GO7-18121X/GO8-19104X. SMC acknowledges support from the Australian Research Council (DP190102714). We thank Alex Markowitz for helpful discussions on the RGS data in the context of warm absorbers. The work of SAB, CPO and MS was supported by a generous grant from the Natural Sciences and Engineering Research Council of Canada. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programme 095. B-0015(A). Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (MCTIC) do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut fur Astronomie Heidelberg and the Instituto de Astrofiica de Andaluci (CSIC). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.00952. S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. The VLA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. This work is based in part on observations made with the Galaxy Evolution Explorer (GALEX). GALEX is a NASA Small Explorer, whose mission was developed in cooperation with the Centre National d'Etudes Spatiales (CNES) of France and the Korean Ministry of Science and Technology. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034

    AGN feeding and feedback in fornax a : kinematical analysis of the multi-phase ISM

    Get PDF
    We present a multi-wavelength study of the gaseous medium surrounding the nearby active galactic nucleus (AGN), Fornax A. Using MeerKAT, ALMA, and MUSE observations, we reveal a complex distribution of the atomic (H i), molecular (CO), and ionised gas in its centre and along the radio jets. By studying the multi-scale kinematics of the multi-phase gas, we reveal the presence of concurrent AGN feeding and feedback phenomena. Several clouds and an extended 3 kpc filament – perpendicular to the radio jets and the inner disk (r . 4:5 kpc) – show highly-turbulent kinematics, which likely induces non-linear condensation and subsequent chaotic cold accretion (CCA) onto the AGN. In the wake of the radio jets and in an external (r & 4:5 kpc) ring, we identify an entrained massive ( 107 M ) multi-phase outflow (vOUT 2000 km s1). The rapid flickering of the nuclear activity of Fornax A ( 3 Myr) and the gas experiencing turbulent condensation raining onto the AGN provide quantitative evidence that a recurrent, tight feeding and feedback cycle may be self-regulating the activity of Fornax A, in agreement with CCA simulations. To date, this is one of the most in-depth probes of such a mechanism, paving the way to apply these precise diagnostics to a larger sample of nearby AGN hosts and their multi-phase inter stellar medium.The European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme; Montage is funded by the National Science Foundation; the Department of Science and Technology and National Research Foundation.http://www.hanspub.org/Journal/AAS.htmlam2022Physic

    A Galaxy-scale Fountain of Cold Molecular Gas Pumped by a Black Hole

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array and Multi-Unit Spectroscopic Explorer observations of the brightest cluster galaxy in Abell 2597, a nearby (z = 0.0821) cool core cluster of galaxies. The data map the kinematics of a three billion solar mass filamentary nebula that spans the innermost 30 kpc of the galaxy's core. Its warm ionized and cold molecular components are both cospatial and comoving, consistent with the hypothesis that the optical nebula traces the warm envelopes of many cold molecular clouds that drift in the velocity field of the hot X-ray atmosphere. The clouds are not in dynamical equilibrium, and instead show evidence for inflow toward the central supermassive black hole, outflow along the jets it launches, and uplift by the buoyant hot bubbles those jets inflate. The entire scenario is therefore consistent with a galaxy-spanning "fountain," wherein cold gas clouds drain into the black hole accretion reservoir, powering jets and bubbles that uplift a cooling plume of low-entropy multiphase gas, which may stimulate additional cooling and accretion as part of a self-regulating feedback loop. All velocities are below the escape speed from the galaxy, and so these clouds should rain back toward the galaxy center from which they came, keeping the fountain long lived. The data are consistent with major predictions of chaotic cold accretion, precipitation, and stimulated feedback models, and may trace processes fundamental to galaxy evolution at effectively all mass scales

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    A novel agent with histone deacetylase inhibitory activity attenuates neointimal hyperplasia

    No full text
    Purpose: Neointimal hyperplasia (NIH), a pathophysiological event identified in bypass graft and stent re-stenosis, is characterised by aberrant vascular smooth muscle cell (VSMC) migration and proliferation. Recent evidence identifies histone deacetylase modulation as a regulator of VSMC proliferation and migration and a potential therapeutic target in the treatment of NIH. The purpose of our study was to determine the in vitro and in vivo potential of a novel agent, MCT-3, to modulate VSMC migration, proliferation and NIH.\ud \ud Methods: In vitro VSMC studies utilized reverse transcriptase and real time Q-PCR gene expression analysis, western blot, elisa assay and cellular proliferation and migration scratch assay's. In vivo studies utilized the partial carotid artery ligation model of NIH together with immunohistochemistry in FVB/N mice.\ud \ud Results: MCT-3 treatment induced histone H3 and H4 acetylation and inhibited VSMC migration and proliferation in vitro and significantly attenuated NIH in vivo. MCT-3-mediated regulation of orphan nuclear receptor NUR77, Plasminogen Activator Inhibitor Type-1 (PAI-1) and cyclin dependent kinase inhibitors (CDKI) p21CIP1/WAF1 and p27KIP1 expression was also identified.\ud \ud Conclusions: Together these observations identify a novel agent, MCT-3, with histone deacetylase inhibitory activity, able to inhibit NIH and identify a potential molecular mechanism responsible for these effects. Additional pre-clinical studies may be warranted to determine the potential clinical utility of this compound

    Siderophile metal fallout to Greenland from the 1991 winter eruption of Hekla (Iceland) and during the global atmospheric perturbation of Pinatubo.

    No full text
    Ir and Pt are siderophile elements that are considered proxies of meteoric material of cosmic origin entrapped within polar ice layers. However, volcanic and anthropogenic fallouts have the potential to perturb their characteristic extraterrestrial signature even in remote polar areas. Here we show a record of Ir and Pt concentrations in snow samples collected from a 2.7 m pit, which was dug at Summit (Central Greenland), and covered five years from winter 1991 to summer 1995. A well-defined peak of Pt, and a spike of Ir, were found at the base of the snow pit record. These maxima occur in close concurrence with large concentration peaks in Al, Ag, Cd and Hg. Dating of the snow layers together with some geochemical evidence suggests that these peaks originated from the fallout to Greenland of volcanic ash emitted by the nearby Hekla volcano (Iceland), during the eruption of January–March 1991. Interestingly, an anomalous peak of methane sulfonic acid (MSA) in Greenland snow also corresponds to the Hekla ash fallout. This might point to an early biomass production in the North Atlantic Ocean during the first half of 1991, which was possibly stimulated by the fertilizing action of the Hekla ash fallout to seawater. During the following years (1992–1995) the global atmosphere was under the influence of the large perturbation produced by the eruption of Mt. Pinatubo (Philippines) in June 1991. Relatively high Ir and Pt concentrations with super-chondritic ratios are recorded especially during summer 1993. We discuss if this can be interpreted as the possible stratospheric input of Pinatubo's aerosol or fallout of extraterrestrial origin. During the same period the snow pit record was also influenced by the advection of air masses enriched in Pt with respect to Ir. One possibility is that this additional Pt contribution originated from widespread emissions into the troposphere produced by vehicles equipped with catalytic converters. In any case, Pt concentration levels found in recent Greenland snow are about two orders of magnitude lower than previously thought, pointing to a much lower anthropogenic contamination of the Arctic regions from Pt. This challenges the concept of an important hemispheric contamination of Pt from vehicles equipped with catalytic converters

    Feeding and feedback in Fornax A

    No full text
    VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'AGN feeding and feedback in Fornax A. Kinematical analysis of the multi-phase ISM.' (bibcode: 2021A&A...656A..45M

    The Close AGN Reference Survey (CARS). Comparative analysis of the structural properties of star-forming and non-star-forming galaxy bars

    Get PDF
    The absence of star formation in the bar region that has been reported for some galaxies can theoretically be explained by shear. However, it is not clear how star-forming (SF) bars fit into this picture and how the dynamical state of the bar is related to other properties of the host galaxy. We used integral-field spectroscopy from VLT/MUSE to investigate how star formation within bars is connected to structural properties of the bar and the host galaxy. We derived spatially resolved Hα fluxes from MUSE observations from the CARS survey to estimate star formation rates in the bars of 16 nearby (0.01   0.5 M⊙ yr−1). Both parameters are uncorrelated with Hubble type. We find that star formation is 1.75 times stronger on the leading than on the trailing edge and is radially decreasing. The conditions to host non-SF bars might be connected to the presence of inner rings. Additionally, from testing an AGN feeding scenario, we report that the star formation rate of the bar is uncorrelated with AGN bolometric luminosity. The results of this study may only apply to type-1 AGN hosts and need to be confirmed for the full population of barred galaxies
    corecore