286 research outputs found

    Diamond degradation in hadron fields

    Get PDF
    The energy dependence of the concentration of primary displacements induced by protons and pions in diamond has been calculated in the energy range 50 MeV - 50 GeV, in the frame of the Lindhard theory. The concentrations of primary displacements induced by protons and pions have completely different energy dependencies: the proton degradation is very important at low energies, and is higher than the pion one in the whole energy range investigated, with the exception of the delta33 resonance region. Diamond has been found, theoretically, to be one order of magnitude more resistant to proton and pion irradiation in respect to silicon.Comment: 7 pages, 3 figure

    Directed differentiation of human pluripotent stem sells for the generation of high-order kidney organoids

    Get PDF
    Our understanding in the inherent properties of human pluripotent stem cells (hPSCs) have made possible the development of differentiation procedures to generate three-dimensional tissue-like cultures, so-called organoids. Here we detail a stepwise methodology to generate kidney organoids from hPSCs. This is achieved through direct differentiation of hPSCs in two-dimensional monolayer culture toward the posterior primitive streak fate, followed by induction of intermediate mesoderm-committed cells, which are further aggregated and cultured in three-dimensions to generate kidney organoids containing segmented nephron-like structures in a process that lasts 20 days. We also provide a concise description on how to assess renal commitment during the time course of kidney organoid generation. This includes the use of flow cytometry and immunocytochemistry analyses for the detection of specific renal differentiation markers

    Engineering physiological environments to advance kidney organoid models from human pluripotent stem cells

    Get PDF
    During embryogenesis, the mammalian kidney arises because of reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM), driving UB branching and nephron induction. These morphogenetic processes involve a series of cellular rearrangements that are tightly controlled by gene regulatory networks and signaling cascades. Here, we discuss how kidney developmental studies have informed the definition of procedures to obtain kidney organoids from human pluripotent stem cells (hPSCs). Moreover, bioengineering techniques have emerged as potential solutions to externally impose controlled microenvironments for organoid generation from hPSCs. Next, we summarize some of these advances with major focus On recent works merging hPSC-derived kidney organoids (hPSC-kidney organoids) with organ-on-chip to develop robust models for drug discovery and disease modeling applications. We foresee that, in the near future, coupling of different organoid models through bioengineering approaches will help advancing to recreate organ-to-organ crosstalk to increase our understanding on kidney disease progression in the human context and search for new therapeutics

    The human genome: a multifractal analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that genomes can be studied via a multifractal formalism. Recently, we used a multifractal approach to study the genetic information content of the <it>Caenorhabditis elegans </it>genome. Here we investigate the possibility that the human genome shows a similar behavior to that observed in the nematode.</p> <p>Results</p> <p>We report here multifractality in the human genome sequence. This behavior correlates strongly on the presence of Alu elements and to a lesser extent on CpG islands and (G+C) content. In contrast, no or low relationship was found for LINE, MIR, MER, LTRs elements and DNA regions poor in genetic information. Gene function, cluster of orthologous genes, metabolic pathways, and exons tended to increase their frequencies with ranges of multifractality and large gene families were located in genomic regions with varied multifractality. Additionally, a multifractal map and classification for human chromosomes are proposed.</p> <p>Conclusions</p> <p>Based on these findings, we propose a descriptive non-linear model for the structure of the human genome, with some biological implications. This model reveals 1) a multifractal regionalization where many regions coexist that are far from equilibrium and 2) this non-linear organization has significant molecular and medical genetic implications for understanding the role of Alu elements in genome stability and structure of the human genome. Given the role of Alu sequences in gene regulation, genetic diseases, human genetic diversity, adaptation and phylogenetic analyses, these quantifications are especially useful.</p

    Rethinking organoid technology through bioengineering

    Get PDF
    In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine.This Review provides an overview of bioengineering technologies that can be harnessed to facilitate the culture, self-organization and functionality of human pluripotent stem cell-derived organoids.Stem cells & developmental biolog

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Bodies in the early childhood education classroom: a Bourdieusian analysis of curricular materials

    Get PDF
    To our knowledge, no studies have used Bourdieu's theoretical contributions to frame investigations on how early childhood education (ECE) teaching materials construct body differences in a way that justifies gender inequality. For Bourdieu, the power to classify and grant properties and signs to subjects, does not reside only in the power to impose, but also in the degree to which the vision is anchored within reality. Therefore, the aims of this study is to assess the representation of the body in the curricular materials of ECE classrooms in 10 public centers, by means of quantitative content analysis and to provide, using Pierre Bourdieu's theoretical framework on the construction of the body, a qualitative critical analysis of the gendered discourses on the construction of the body that the visual depictions of the bodies transmit in ECE classrooms based on the perceptions of a group of ECE educators and students. Our results show that these images do not represent children as individuals, but rather as subjects with socially constructed labels that favor stereotypical roles. Both teachers and students relate their own training with the curricular practices they perform in their classrooms suggesting that visual representations are both abstractly embedded into institutional practices as well as practically integrated into educational work through curricular materials. In conclusion, they recognize that the fight against taxonomies and labels with which the body is constructed is a process linked to the identity and autonomy of the agents who are participating in education

    Interaction between acrylic substrates and RAD16-I peptide in its self-assembling

    Full text link
    [EN] Self-assembling peptides (SAP) are widely used as scaffolds themselves, and recently as fillers of microporous scaffolds, where the former provides a cell-friendly nanoenvironment and the latter improves its mechanical properties. The characterization of the interaction between these short peptides and the scaffold material is crucial to assess the potential of such a combined system. In this work, the interaction between poly(ethyl acrylate) (PEA) and 90/10 ethyl acrylate-acrylic acid copolymer P(EAcoAAc) with the SAP RAD16-I has been followed using a bidimensional simplified model. By means of the techniques of choice (congo red staining, atomic force microscopy (AFM), and contact angle measurements) the interaction and self-assembly of the peptide has proven to be very sensitive to the wettability and electro-negativity of the polymeric substrate.The authors acknowledge funding through the European Commission FP7 project RECATABI (NMP3-SL-2009-229239), and from the Spanish Ministerio de Ciencia e Innovacion through projects MAT2011-28791-C03-02 and -03. This work was also supported by the Spanish Ministerio de Educacion through M. Arnal-Pastor FPU 2009-1870 grant. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV.Arnal Pastor, MP.; González-Mora, D.; García-Torres, F.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Interaction between acrylic substrates and RAD16-I peptide in its self-assembling. Journal of Polymer Research. 23(9):173-184. https://doi.org/10.1007/s10965-016-1069-3S173184239Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4):442–450Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34:663–672Zhang S, Altman M (1999) Peptide self-assembly in functional polymer science and engineering. Reac Func Polym 41:91–102Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15(5):413–420Zhang S, Zhao X, Spirio L, PuraMatrix (2005) Self-assembling peptide nanofiber scaffolds. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue Engineering. CRC Press, Boca Raton, FL, pp. 217–238Sieminski AL, Semino CE, Gong H, Kamm RD (2008) Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J Biomed Mater Res A 87(2):494–504Quintana L, Fernández Muiños T, Genove E, Del Mar Olmos M, Borrós S, Semino CE (2009) Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment. Tissue Eng Part A 15(1):45–54Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng 12(8):2215–2227Semino CE, Merok JR, Crane GG, Panagiotakos G, Zhang S (2003) Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71:262–270Thonhoff JR, Lou DI, Jordan PM, Zhao X, Compatibility WP (2008) Of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51Tokunaga M, Liu ML, Nagai T, Iwanaga K, Matsuura K, Takahashi T, Kanda M, Kondo N, Wang P, Naito AT, Komuro I (2010) Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. J Mol Cell Cardiol 49(6):972–983Takei J (2006) 3-Dimensional cell culture scaffold for everyone: drug screening. Tissue engineering and cancer biology. AATEX 11(3):170–176McGrath AM, Novikova LN, Novikov LN, Wiberg MBD (2010) ™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res Bull 83(5):207–213Wang W, Itoh S, Matsuda A, Aizawa T, Demura M, Ichinose S, Shinomiya K, Tanaka J (2008) Enhanced nerve regeneration through a bilayered chitosan tube: The effect ofintroduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res Part A 85:919–928Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI (2008) Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 29(2):161–171Vallés-Lluch A, Arnal-Pastor M, Martínez-Ramos C, Vilariño-Feltrer G, Vikingsson L, Castells-Sala C, Semino CE, Monleón Pradas M (2013) Combining self-assembling peptide gels with three-dimensional elastomer scaffolds. Acta Biomater 9(12):9451–9460Valles-Lluch A, Arnal-Pastor M, Martinez-Ramos C, Vilarino-Feltrer G, Vikingsson L, Monleon Pradas M (2013) Grid polymeric scaffolds with polypeptide gel filling as patches for infarcted tissue regeneration. Conf Proc IEEE Eng Med Biol Soc 2013:6961–6964Soler-Botija C, Bagó JR, Llucià-Valldeperas A, Vallés-Lluch A, Castells-Sala C, Martínez-Ramos C, Fernández-Muiños T, Chachques JC, Monleón Pradas M, Semino CE, Bayes-Genis A (2014) Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration. Am J Transl Res 6(3):291–301Martínez-Ramos M, Arnal-Pastor M, Vallés-Lluch A, Monleón Pradas M (2015) Peptide gel in a scaffold as a composite matrix for endothelial cells. J Biomed Mater Res Part A 103 A:3293–3302Rico P, Rodríguez Hernández JC, Moratal D, Altankov G, Monleón Pradas M, Salmerón-Sánchez M (2009) Substrate-induced assembly of fibronectin into networks: influence of surface chemistry and effect on osteoblast adhesion. Tissue Eng Part A 15(11):3271–3281Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M (2010) Fibronectin activity on substrates with controlled -OH density. J Biomed Mater Res A 92(1):322–331Rodríguez Hernández JC, Salmerón Sánchez M, Soria JM, Gómez Ribelles JL, Monleón Pradas M (2007) Substrate chemistry-dependent conformations of single laminin molecules on polymer surfaces are revealed by the phase signal of atomic force microscopy. Biophys J 93(1):202–207Cantini M, Rico P, Moratal D, Salmerón-Sánchez M (2012) Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter 8:5575–5584Anselme K, Ponche A, Bigerelle M (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H J Eng Med 224:1487–1507Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 99(8):5133–5138Busscher HJ, Vanpelt AWJ, Deboer P, Dejong HP, Arends J (1984) The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf 9:319–331Birdi, KS. (1997) Surface tension of polymers. In: Yildrim Erbil H, ed. Handbook of surface and colloid chemistry CRC Press, Boca Raton, p. 292.Collier JH (2003) MessersmithPB.Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug Chem 14(4):748–755Kakiuchi Y, Hirohashi N, Murakami-Murofushi K (2013) The macroscopic structure of RADA16 peptide hydrogel stimulates monocyte/macrophage differentiation in HL60 cells via cholesterol synthesis. BiochemBiophys Res Commun 433(3):298–304Pérez-Garnes M, González-García C, Moratal D, Rico P, Salmerón-Sánchez M (2011) Fibronectin distribution on demixednanoscale topographies. Int J Artif Organs 34(1):54–63Salmerón-Sánchez M, Rico P, Moratal D, Lee TT, Schwarzbauer JE, García AJ (2011) Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials 32(8):2099–2105Ye Z, Zhang H, Luo H, Wang S, Zhou Q, DU X, et al. (2008) Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I. J Pept Sci 14:152–162Keselowsky BG, Collard DM, García AJ (2004) Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25:5947–5954Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S (2002) Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mater Res 59:84–99Coelho NM, González-García C, Planell JA, Salmerón-Sánchez M, Altankov G (2010) Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur Cell Mater 19:262–272Briz N, Antolinos-Turpin CM, Alió J, Garagorri N, Gómez Ribelles JL, Gómez-Tejedor JA (2013) Fibronectin fixation on poly(ethyl acrylate)-based copolymers. J Biomed Mater Res B Appl Biomater 101(6):991–997Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747Soria JM, Martínez Ramos C, Bahamonde O, García Cruz DM, Salmerón Sánchez M, García Esparza MA, Casas C, Guzmán M, Navarro X, Gómez Ribelles JL, García Verdugo JM, Monleón Pradas M, Barcia JA (2007) Influence of the substrate's hydrophilicity on the in vitro Schwann cells viability. J Biomed Mater Res A 83(2):463–470Van Krevelen, DW. (1997) Properties of polymers. Chapter 13 mechanical properties of solid polymers. Elsevier, pp. 367–43
    corecore