30 research outputs found

    Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation

    Get PDF
    A role for WNT signalling in gastric carcinogenesis has been suggested due to two major observations. First, patients with germline mutations in adenomatous polyposis coli (APC) are susceptible to stomach polyps and second, in gastric cancer, WNT activation confers a poor prognosis. However, the functional significance of deregulated WNT signalling in gastric homoeostasis and cancer is still unclear. In this study we have addressed this by investigating the immediate effects of WNT signalling activation within the stomach epithelium. We have specifically activated the WNT signalling pathway within the mouse adult gastric epithelium via deletion of either glycogen synthase kinase 3 (GSK3) or APC or via expression of a constitutively active β-catenin protein. WNT pathway deregulation dramatically affects stomach homoeostasis at very short latencies. In the corpus, there is rapid loss of parietal cells with fundic gland polyp (FGP) formation and adenomatous change, which are similar to those observed in familial adenomatous polyposis. In the antrum, adenomas occur from 4 days post-WNT activation. Taken together, these data show a pivotal role for WNT signalling in gastric homoeostasis, FGP formation and adenomagenesis. Loss of the parietal cell population and corresponding FGP formation, an early event in gastric carcinogenesis, as well as antral adenoma formation are immediate effects of nuclear β-catenin translocation and WNT target gene expression. Furthermore, our inducible murine model will permit a better understanding of the molecular changes required to drive tumourigenesis in the stomach

    Strategies for Management of Synchronous Colorectal Metastases

    No full text
    The management of synchronous presentation of colorectal cancer and liver metastases has long been a topic of debate and discussion for surgeons due to the unique dilemma of balancing operative timing along with treatment strategy. Operative strategies for resection include staged resection with colon first approach, “reverse” staged resection with liver metastases resected first, and one-stage, or simultaneous, resection of both the primary tumor and liver metastases approach. These operative strategies can be further augmented with perioperative chemotherapy and other novel approaches that may improve resectability and patient survival. The decision on operative timing and approach, however, remains largely dependent on the surgeon’s determination of disease resectability, patient fitness, and the need for neoadjuvant chemotherapy

    The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation

    No full text
    The NADPH oxidase activity of phagocytes and its generation of reactive oxygen species (ROS) is critical for host-defense, but ROS overproduction can also lead to inflammation and tissue injury. Here we report that TRPM2, a non-selective and redox-sensitive cation channel, inhibits ROS production in phagocytic cells and prevents endotoxin-induced lung inflammation in mice. TRPM2-deficient mice challenged with endotoxin (lipopolysaccharide) showed an increased inflammatory signature and decreased survival compared to controls. TRPM2 functions by dampening NADPH oxidase-mediated ROS production through depolarization of the plasma membrane in phagocytes. Since ROS also activates TRPM2, our findings establish a negative feedback mechanism inactivating ROS production through inhibition of the membrane potential-sensitive NADPH oxidase
    corecore