603 research outputs found

    Population structure and conservation status of the white gorgonian Eunicella singularis (Esper, 1791) in Tunisian waters (Central Mediterranean)

    Get PDF
    The white gorgonian, Eunicella singularis, is thriving in Mediterranean hard-bottom communities; however, data regarding its distribution and ecology remain absent and insufficient, particularly in the southern Mediterranean Sea. In this study, the population structure and disturbance levels of the most common gorgonian in Tunisia were assessed for the first time. During two years (2015-2016), a total of 818 colonies of E. singularis were surveyed in five coastal sites, by scuba diving, between 7 to 40 m depth. Collected data included density, colony height, and extent of injury. Mean population density was 11.91 ± 7.42 colonies per m2 (mean ± SD). Mean and maximum colony heights were 16.49 ± 5.59 cm and 51 cm, respectively. Among populations, mean extent of tissue injury differed considerably, ranging from 12.47% to 58.88% and most affected colonies showed old necrosis. These data regarding the demographic structure and level of injuries are needed to provide insights into the conservation status of the Tunisian population of E. singularis. Indeed, data on the amount of necrosis could highlight the strength of the colonies’ exposure to mechanical impacts and are consequently crucial to study changes in their demographic structure over time. In fact, the size, structures, and the high level of tissue necrosis of the colonies suggest a low conservation status of the studied Tunisian populations

    Coralligenous formations dominated by Eunicella cavolini (Koch, 1887) in the NE Mediterranean: biodiversity and structure

    Get PDF
    Coralligenous formations are biogenic structures typical of the underwater Mediterranean seascape. Their intricate, multi-layered species assemblages are composed of perennial, long-lived organisms, particularly vulnerable to natural or human-induced disturbances. Despite their high ecological role and conservation value, few studies have addressed the assemblages outside the NW Mediterranean. This is the first quantitative assessment of coralligenous in the N Aegean Sea (NE Mediterranean), specifically focusing at the upper bathymetric limit of assemblages that are dominated by the yellow gorgonian Eunicella cavolini. The number and percent cover of macrobenthic species were studied at depths of 18 to 35 m, using a photoquadrat method. A total of 99 benthic taxa were identified, out of which 89 perennial ones were used to investigate spatial patterns in assemblage structure, composition, and biodiversity. A mean number of 47 perennial taxa were recorded per site, with encrusting coralline algae and sponges being the dominant groups in percent cover and species number, respectively. Across the studied localities, structural complexity and community composition were overall similar, but assemblages presented distinctive differences at the level of sites highlighting the role of local abiotic and anthropogenic factors in the shaping of the coralligenous. Compared to the rest of the Mediterranean, assemblages hosted a similar number of taxa. However, the number and percent cover of erect bryozoans were generally low, while, apart from E. cavolini, other erect anthozoan species were absent. This work provides an important baseline for comparisons and monitoring at a local or Mediterranean scale level.

    Multiple Processes Regulate Long-Term Population Dynamics of Sea Urchins on Mediterranean Rocky Reefs

    Get PDF
    12 pages, 4 figures, 7 tables, supporting information in https://doi.org/10.1371/journal.pone.0036901We annually monitored the abundance and size structure of herbivorous sea urchin populations (Paracentrotus lividus and Arbacia lixula) inside and outside a marine reserve in the Northwestern Mediterranean on two distinct habitats (boulders and vertical walls) over a period of 20 years, with the aim of analyzing changes at different temporal scales in relation to biotic and abiotic drivers. P. lividus exhibited significant variability in density over time on boulder bottoms but not on vertical walls, and temporal trends were not significantly different between the protection levels. Differences in densities were caused primarily by variance in recruitment, which was less pronounced inside the MPA and was correlated with adult density, indicating density-dependent recruitment under high predation pressure, as well as some positive feedback mechanisms that may facilitate higher urchin abundances despite higher predator abundance. Populations within the reserve were less variable in abundance and did not exhibit the hyper-abundances observed outside the reserve, suggesting that predation effects maybe more subtle than simply lowering the numbers of urchins in reserves. A. lixula densities were an order of magnitude lower than P. lividus densities and varied within sites and over time on boulder bottoms but did not differ between protection levels. In December 2008, an exceptionally violent storm reduced sea urchin densities drastically (by 50% to 80%) on boulder substrates, resulting in the lowest values observed over the entire study period, which remained at that level for at least two years (up to the present). Our results also showed great variability in the biological and physical processes acting at different temporal scales. This study highlights the need for appropriate temporal scales for studies to fully understand ecosystem functioning, the concepts of which are fundamental to successful conservation and management. © 2012 Hereu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis study was partially funded by the ‘‘Direcció General de Pesca Marítima’’, the ‘‘Departament de Medi Natural’’ of the ‘‘Generalitat de Catalunya> and the CSIC project (PIEC 200430E599)Peer Reviewe

    Impacts on coralligenous outcrop biodiversity by a dramatic coastal storm

    Get PDF
    Extreme events are rare, stochastic perturbations that can cause abrupt and dramatic ecological change within a short period of time relative to the lifespan of organisms. Studies over time provide exceptional opportunities to detect the effects of extreme climatic events and to measure their impacts by quantifying rates of change at population and community levels. In this study, we show how an extreme storm event affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006-2008) and after the impact (2009-2010) at four different sites. Storms of comparable severity have been documented to occur occasionally within periods of 50 years in the Mediterranean Sea. We assessed the effects derived from the storm comparing changes in benthic community composition at sites exposed to and sheltered from this extreme event. The sites analyzed showed different damage from severe to negligible. The most exposed and impacted site experienced a major shift immediately after the storm, represented by changes in the species richness and beta diversity of benthic species. This site also showed higher compositional variability immediately after the storm and over the following year. The loss of cover of benthic species resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates) was uneven, and those with fragile forms were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small patches survived after the storm and began to grow slightly during the following year. In contrast, sheltered sites showed no significant changes in all the studied parameters, indicating no variations due to the storm. This study provides new insights into the responses to large and rare extreme events of Mediterranean communities with low dynamics and long-lived species, which are among the most threatened by the effects of global change

    Rapid Biodiversity Assessment and Monitoring Method for Highly Diverse Benthic Communities: A Case Study of Mediterranean Coralligenous Outcrops

    Get PDF
    Increasing anthropogenic pressures urge enhanced knowledge and understanding of the current state of marine biodiversity. This baseline information is pivotal to explore present trends, detect future modifications and propose adequate management actions for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still poorly understood. There is currently no single sampling method that has been demonstrated to be sufficiently representative to ensure adequate community assessment and monitoring in this habitat. Therefore, we propose a rapid non-destructive protocol for biodiversity assessment and monitoring of coralligenous outcrops providing good estimates of its structure and species composition, based on photographic sampling and the determination of presence/absence of macrobenthic species. We used an extensive photographic survey, covering several spatial scales (100s of m to 100s of km) within the NW Mediterranean and including 2 different coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum assemblage (CRA). This approach allowed us to determine the minimal sampling area for each assemblage (5000 cm2 for PCA and 2500 cm2 for CRA). In addition, we conclude that 3 replicates provide an optimal sampling effort in order to maximize the species number and to assess the main biodiversity patterns of studied assemblages in variability studies requiring replicates. We contend that the proposed sampling approach provides a valuable tool for management and conservation planning, monitoring and research programs focused on coralligenous outcrops, potentially also applicable in other benthic ecosystems

    Experimental evidence of synergistic effects of warming and invasive algae on a temperate reef-builder coral

    Get PDF
    In the current global climate change scenario, stressors overlap in space and time, and knowledge on the effects of their interaction is highly needed to understand and predict the response and resilience of organisms. Corals, among many other benthic organisms, are affected by an increasing number of global change-related stressors including warming and invasive species. In this study, the cumulative effects between warming and invasive algae were experimentally assessed on the temperate reef-builder coral Cladocora caespitosa. We first investigated the potential local adaptation to thermal stress in two distant populations subjected to contrasting thermal and necrosis histories. No significant differences were found between populations. Colonies from both populations suffered no necrosis after long-term exposure to temperatures up to 29 °C. Second, we tested the effects of the interaction of both warming and the presence of invasive algae. The combined exposure triggered critical synergistic effects on photosynthetic efficiency and tissue necrosis. At the end of the experiment, over 90% of the colonies subjected to warming and invasive algae showed signs of necrosis. The results are of particular concern when considering the predicted increase of extreme climatic events and the spread of invasive species in the Mediterranean and other seas in the future

    The zooxanthellate scleractinian coral Oulastrea crispata (Lamarck, 1816), an overlooked newcomer in the Mediterranean Sea?

    Get PDF
    The zooxanthellate scleractinian coral Oulastrea crispata, a widely distributed species across central Indo-Pacific nearshore marine habitats, has been first reported from the Mediterranean Sea (Corsica) in 2014. Here we report on two new sites for this species in the NW Mediterranean Sea and provide a general description of external morphological characters of the colonies and a detailed account of the cnidom to help future identifications. Living specimens may appear virtually identical to small colonies (~5 cm) of the Mediterranean zooxanthellate scleractinian Cladocora caespitosa. While this species shows long, ramified, independent corallites, with cylindrical calices, O. crispata has enlarged, cup-like calices, which can be joined by the coenosteum. It also shows clear differences among several groups of nematocysts, principally the presence in the filaments of large penicilli (p-mastigophore) of one type, which are absent in C. caespitosa. Identifications based on underwater observations or even the analysis of photographs may easily lead to misleading identifications. We hypothesize that O. crispata may have gone unnoticed because of misidentifications as C. caespitosa. More detailed research is needed to get reliable maps of the actual distribution of this apparently non-indigenous species in the Mediterranean Sea

    Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea

    Get PDF
    Postdoctoral contract Juan de la Cierva [IJCI-2016-29329]Ministerio de Ciencia, Innovacion y Universidades PTA2015-10829-IInterreg Med Programme MPA-Adapt 1MED15_3.2_M2_337European Regional Development Fund - Foundation Albert II MonacoEuropean Union’s Horizon 2020Ministry of Education, Spain FPU15/0545

    The impact of estimator choice: Disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets

    Get PDF
    The software program STRUCTURE is one of the most cited tools for determining population structure. To infer the optimal number of clusters from STRUCTURE out- put, the ΔK method is often applied. However, a recent study relying on simulated microsatellite data suggested that this method has a downward bias in its estimation of K and is sensitive to uneven sampling. If this finding holds for empirical data sets, conclusions about the scale of gene flow may have to be revised for a large number of studies. To determine the impact of method choice, we applied recently described es- timators of K to re-estimate genetic structure in 41 empirical microsatellite data sets; 15 from a broad range of taxa and 26 from one phylogenetic group, coral. We com- pared alternative estimates of K (Puechmaille statistics) with traditional (ΔK and pos- terior probability) estimates and found widespread disagreement of estimators across data sets. Thus, one estimator alone is insufficient for determining the optimal num- ber of clusters; this was regardless of study organism or evenness of sampling scheme. Subsequent analysis of molecular variance (AMOVA) did not necessarily clarify which clustering solution was best. To better infer population structure, we suggest a com- bination of visual inspection of STRUCTURE plots and calculation of the alternative estimators at various thresholds in addition to ΔK. Disagreement between traditional and recent estimators may have important biological implications, such as previously unrecognized population structure, as was the case for many studies reanalysed here

    Structure and biodiversity of coralligenous assemblages dominated by the precious red coral Corallium rubrum over broad spatial scales

    Get PDF
    Data on species diversity and structure in coralligenous outcrops dominated by Corallium rubrum are lacking. A hierarchical sampling including 3 localities and 9 sites covering more than 400 km of rocky coasts in NW Mediterranean, was designed to characterize the spatial variability of structure, composition and diversity of perennial species inhabiting coralligenous outcrops. We estimated species/taxa composition and abundance. Eight morpho-functional groups were defined according to their life span and growth to characterize the structural complexity of the outcrops. The species composition and structural complexity differed consistently across all spatial scales considered. The lowest and the highest variability were found among localities (separated by >200 km) and within sites (separated by 1-5 km), respectively supporting differences in diversity indices. The morpho-functional groups displayed a consistent spatial arrangement in terms of the number, size and shape of patches across study sites. These results contribute to filling the gap on the understanding of assemblage composition and structure and to build baselines to assess the response of this of this highly threatened habitat to anthropogenic disturbances
    corecore