16 research outputs found

    Identification of a Protein in Several Borrelia Species which is Related to OspC of the Lyme Disease Spirochetes.

    Get PDF
    Using oligonucleotide probes which have previously been shown to be specific for the ospC gene found in the Lyme disease spirochete species Borrelia burgdorferi, B. garinii, and group VS461, we detected an ospC homolog in other Borrelia species including B. coriaceae, B. hermsii, B. anserina, B. turicatae, and B. parkeri. In contrast to the Lyme disease spirochetes, which carry the ospC gene on a 26-kb circular plasmid, we mapped the gene in other Borrelia species to linear plasmids which varied in size among the isolates tested. Some isolates carry multiple copies of the gene residing on linear plasmids of different sizes. The analyses conducted here also demonstrate that these Borrelia species contain a linear chromosome. Northern (RNA) blot analyses demonstrated that the gene is transcriptionally expressed in all species examined. High levels of transcriptional expression were observed in some B. hermsii isolates. Transcriptional start site analyses revealed that the length of the untranslated leader sequence was identical to that observed in the Lyme disease spirochete species. By Western blotting (immunoblotting) with antiserum (polyclonal) raised against the OspC protein of B. burgdorferi, we detected an immunoreactive protein of the same molecular weight as the OspC found in Lyme disease spirochete species. The results presented here demonstrate the presence of a protein that is genetically and antigenically related to OspC which is expressed in all species of the genus Borrelia tested

    Analysis of the Distribution and Molecular Heterogeneity of the ospD Gene among the Lyme Disease Spirochetes: Evidence for Lateral Gene Exchange

    Get PDF
    Analysis of the ospD gene has revealed that this gene is not universal among Lyme disease spirochete isolates. The gene was found to be carried by 90, 50, and 24% of the Borrelia garinii, B. afzelii, and B. burgdorferi isolates tested. Size variability in the ospD-encoding plasmid was also observed. Sequence analysis has demonstrated the presence of various numbers of a 17-bp repeated sequence in the upstream control (promoter) region of the gene. In addition, a region within the coding sequence where various insertions, deletions, and direct repeats occur was identified. ospD gene sequences from 31 different isolates were determined and utilized in pairwise sequence comparisons and construction of a gene tree. These analyses suggest that the ospD gene was the target of several recombinational events and that the gene was recently acquired by Lyme disease spirochetes and laterally transferred between species

    DNA Is Packaged within Membrane-Derived Vesicles of Gram-Negative but Not Gram-Positive Bacteria

    No full text
    Recently, DNA packaged within nuclease-resistant membrane vesicles of Neisseria gonorrhoeae and Borrelia burgdorferi was described. This study assayed 18 species of gram-negative and gram-positive eubacteria for nuclease-protected DNA associated with extracellular membrane vesicles. Vesicles from only the gram-negative bacteria contained nuclease-protected linear or supercoiled DNAs or both
    corecore