67 research outputs found

    Antibiotics Uptake from Soil and Translocation in the Plants – Meta-analysis

    Get PDF
    Antibiotics reach agricultural soils via fertilization with manure and biosolids as well as irrigation withwastewater and have the potential to be taken up by growing crops. The fate of antibiotics in terms of uptakefrom soil to plants, as well as translocation from root to leaves, is determined by a combination of antibiotic’sphysio-chemical (e.g. speciation, lipophilicity), soil (e.g. organic carbon content, pH) and plant (e.g.transpiration rates) characteristics. In this meta-analysis, a literature search was executed to obtain an overview of antibiotic uptake to plants, with an aim to identify uptake and translocation patterns of different antibiotic classes. Overall, we found that higher uptake of tetracyclines to plant leaves was observed compared to sulfonamides. Differences were also observed in translocation within the plants, where tetracyclines were found in roots and leaves with close to equal concentrations, while the sulfonamides represented a tendency to accumulate to the root fraction. The antibiotic’s characteristics have a high influence on their fate, for example, the high water-solubility and uncharged speciation in typical agricultural soil pH ranges likely induces tetracycline uptake from soil and translocation in plant. Despite the advances in knowledge over the past decade, our meta-analysis indicated that the available research is focused on a limited number of analytes and antibiotic classes. Furthermore, fastgrowing plant species (e.g. spinach, lettuce, and radish) are overly represented in studies compared to crop species with higher significance for human food sources (e.g. corn, wheat, and potato), requiring more attention in future research

    PSVMC Post Operative Exploratory Study June-July 2015

    Get PDF
    https://digitalcommons.psjhealth.org/stvincent-bootcamp/1026/thumbnail.jp

    Relationships between weather and yield anomalies vary with crop type and latitude in Sweden

    Get PDF
    CONTEXT: Information on how crop yields are affected by weather variations and extreme weather is needed to develop climate adaptation measures for arable cropping systems. Here, we analysed the effects of weather anomalies and soil texture on crop yield anomalies across Sweden from 1965 to 2020. OBJECTIVE: The aims of this study were to (i) assess the effects of temperature and precipitation anomalies and extreme weather on crop yield anomalies for major field crops across Sweden, (ii) quantify how crop responses to weather anomalies vary along the north-south climate gradient across Sweden, and (iii) elucidate the impacts of soil texture on yield responses to weather anomalies. METHODS: We used daily mean air temperature, daily total precipitation, soil texture and crop yield data from public databases covering all 21 counties in Sweden. Yield data was detrended to account for the effects of agricultural intensification on crop productivity. To assess seasonal weather influences on crop yields, temporal trends of daily average temperature and daily total precipitation were detrended for each season containing a three-month period. We also used a water balance index and a heat wave index to evaluate the impact of extreme weather. RESULTS AND CONCLUSIONS: Our analyses showed that years with extreme weather during summer (i.e. heat waves, drought or water excess) resulted in the largest negative yield anomalies. Spring-sown crops were more negatively affected by extreme weather compared to autumn-sown crops, which we associate with differences in the lengths of the growth period for autumn- and spring-sown crops. Effects of soil texture on yield anomalies were found for spring-sown cereals, where negative effects of drought were exacerbated with increasing sand content. Moreover, we showed that the effects of weather conditions on crop yield anomalies differed between different regions within the country. In northern Sweden, crop yields were more sensitive to excess water, while drought effects were more pronounced in southern Sweden. Similarly, increased summer temperatures favoured crop yields in northern Sweden but had a negative impact on crop yields in the southern part of the country. SIGNIFICANCE: Our study demonstrates that weather impacts on yields vary between crops and locations, and that adaptation to future climate will require crop- and site-specific strategies

    Approaches to delineate aggregates in intact soil using X-ray imaging

    Get PDF
    Soil structure refers to the spatial arrangement of primary soil particles and pores, and is known to influence a variety of soil functions including carbon sequestration and water holding capacity. At present, research in this field is often divided, focusing either on pores where pore networks are investigated in undisturbed soil or on solids where isolated soil aggregates are commonly studied. The choice of approach depends on the needs and traditions in different disciplines of soil science. While there is much debate regarding how well these viewpoints relate to each other, there have been only marginal research efforts undertaken to compare them quantitatively. In this study, we presented and evaluated methods to identify 3-D subunits in X-ray images of eight undisturbed soil samples that we interpreted as macroaggregates, and compared these to to results from drop-shatter tests. Here, we exploited the cohesive forces of water that induces shrinkage cracks under drying. Despite promising trends, comparisons between image and drop-shatter test derived aggregate properties remained inconclusive. Nevertheless, our results encourage further investigations on larger sample sets and different observation scales. The here presented and discussed aggregate delineation methods illustrate an approach to harmonize soil structure characterization in terms of both pore-networks and soil aggregation. For example, respective extended approaches may be developed to evaluate the locations of microaggregates within macroaggregates

    N2O emissions from California farmlands: A review

    Get PDF
    Of the greenhouse gases emitted from cropland, nitrous oxide (N2O) has the highest global warming potential. The state of California acknowledges that agriculture both contributes to and is affected by climate change, and in 2016 it adopted legislation to help growers reduce emissions of greenhouse gases, explicitly including N2O. Nitrous oxide emissions can vary widely due to environmental and agronomic factors with most emission estimates coming from temperate grain systems. There is, however, a dearth of emission estimates from perennial and vegetable cropping systems commonly found in California\u27s Mediterranean climate. Therefore, emission factors (EFs) specific to California conditions are needed to accurately assess statewide N2O emissions and mitigation options. In this paper, we review 16 studies reporting annual and seasonal N2O emissions. This data set represents all available studies on measured emissions at the whole field scale and on an event basis. Through this series of studies, we discuss how such farm management and environmental factors influence N2O emissions from California agriculture and may serve as a basis for improved EF calculations

    Biotic homogenization, lower soil fungal diversity and fewer rare taxa in arable soils across Europe

    Get PDF
    Soil fungi are a key constituent of global biodiversity and play a pivotal role in agroecosystems. How arable farming affects soil fungal biogeography and whether it has a disproportional impact on rare taxa is poorly understood. Here, we used the high-resolution PacBio Sequel targeting the entire ITS region to investigate the distribution of soil fungi in 217 sites across a 3000 km gradient in Europe. We found a consistently lower diversity of fungi in arable lands than grasslands, with geographic locations significantly impacting fungal community structures. Prevalent fungal groups became even more abundant, whereas rare groups became fewer or absent in arable lands, suggesting a biotic homogenization due to arable farming. The rare fungal groups were narrowly distributed and more common in grasslands. Our findings suggest that rare soil fungi are disproportionally affected by arable farming, and sustainable farming practices should protect rare taxa and the ecosystem services they support

    The impact of agricultural management on soil aggregation and carbon storage is regulated by climatic thresholds across a 3000 km European gradient

    Get PDF
    Organic carbon and aggregate stability are key features of soil quality and are important to consider when evaluating the potential of agricultural soils as carbon sinks. However, we lack a comprehensive understanding of how soil organic carbon (SOC) and aggregate stability respond to agricultural management across wide environmental gradients. Here, we assessed the impact of climatic factors, soil properties and agricultural management (including land use, crop cover, crop diversity, organic fertilization, and management intensity) on SOC and the mean weight diameter of soil aggregates, commonly used as an indicator for soil aggregate stability, across a 3000 km European gradient. Soil aggregate stability (−56%) and SOC stocks (−35%) in the topsoil (20 cm) were lower in croplands compared with neighboring grassland sites (uncropped sites with perennial vegetation and little or no external inputs). Land use and aridity were strong drivers of soil aggregation explaining 33% and 20% of the variation, respectively. SOC stocks were best explained by calcium content (20% of explained variation) followed by aridity (15%) and mean annual temperature (10%). We also found a threshold-like pattern for SOC stocks and aggregate stability in response to aridity, with lower values at sites with higher aridity. The impact of crop management on aggregate stability and SOC stocks appeared to be regulated by these thresholds, with more pronounced positive effects of crop diversity and more severe negative effects of crop management intensity in nondryland compared with dryland regions. We link the higher sensitivity of SOC stocks and aggregate stability in nondryland regions to a higher climatic potential for aggregate-mediated SOC stabilization. The presented findings are relevant for improving predictions of management effects on soil structure and C storage and highlight the need for site-specific agri-environmental policies to improve soil quality and C sequestration

    Diversity of archaea and niche preferences among putative ammonia-oxidizing Nitrososphaeria dominating across European arable soils

    Get PDF
    Archaeal communities in arable soils are dominated by Nitrososphaeria, a class within Thaumarchaeota comprising all known ammonia-oxidizing archaea (AOA). AOA are key players in the nitrogen cycle and defining their niche specialization can help predicting effects of environmental change on these communities. However, hierarchical effects of environmental filters on AOA and the delineation of niche preferences of nitrososphaerial lineages remain poorly understood. We used phylogenetic information at fine scale and machine learning approaches to identify climatic, edaphic and geomorphological drivers of Nitrososphaeria and other archaea along a 3000 km European gradient. Only limited insights into the ecology of the low-abundant archaeal classes could be inferred, but our analyses underlined the multifactorial nature of niche differentiation within Nitrososphaeria. Mean annual temperature, C:N ratio and pH were the best predictors of their diversity, evenness and distribution. Thresholds in the predictions could be defined for C:N ratio and cation exchange capacity. Furthermore, multiple, independent and recent specializations to soil pH were detected in the Nitrososphaeria phylogeny. The coexistence of widespread ecophysiological differences between closely related soil Nitrososphaeria highlights that their ecology is best studied at fine phylogenetic scale

    Diversity of archaea and niche preferences among putative ammonia-oxidizing Nitrososphaeria dominating across European arable soils

    Get PDF
    Archaeal communities in arable soils are dominated by Nitrososphaeria, a class within Thaumarchaeota comprising all known ammonia-oxidizing archaea (AOA). AOA are key players in the nitrogen cycle and defining their niche specialization can help predicting effects of environmental change on these communities. However, hierarchical effects of environmental filters on AOA and the delineation of niche preferences of nitrososphaerial lineages remain poorly understood. We used phylogenetic information at fine scale and machine learning approaches to identify climatic, edaphic and geomorphological drivers of Nitrososphaeria and other archaea along a 3000 km European gradient. Only limited insights into the ecology of the low-abundant archaeal classes could be inferred, but our analyses underlined the multifactorial nature of niche differentiation within Nitrososphaeria. Mean annual temperature, C:N ratio and pH were the best predictors of their diversity, evenness and distribution. Thresholds in the predictions could be defined for C:N ratio and cation exchange capacity. Furthermore, multiple, independent and recent specializations to soil pH were detected in the Nitrososphaeria phylogeny. The coexistence of widespread ecophysiological differences between closely related soil Nitrososphaeria highlights that their ecology is best studied at fine phylogenetic scale.The Digging Deeper project was funded through the 2015–2016 BiodivERsA call, with national funding from the Swiss National Science Foundation (grant 31BD30-172466), the Deutsche Forschungsgemeinschaft (grant 317895346), the Swedish Research Council Formas (grant 2016-0194), the Spanish Ministerio de Economía y Competitividad (grant PCIN-2016-028) and the Agence Nationale de la Recherche (grant ANR-16-EBI3-0004-01). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. Sequencing was performed by the SNP&SEQ Technology Platform in Uppsala. The facility is part of the National Genomics Infrastructure (NGI) Sweden and Science for Life Laboratory. The SNP&SEQ Platform is also supported by the Swedish Research Council and the Knut and Alice Wallenberg Foundation
    corecore