751 research outputs found

    Ventricular longitudinal function is associated with microvascular obstruction and intramyocardial haemorrhage.

    Get PDF
    Microvascular obstruction (MVO) and intramyocardial haemorrhage (IMH) are associated with adverse prognosis, independently of infarct size after reperfused ST-elevation myocardial infarction (STEMI). Mitral annular plane systolic excursion (MAPSE) is a well-established parameter of longitudinal function on echocardiography.We aimed to investigate how acute MAPSE, assessed by a four-chamber cine-cardiovascular MR (CMR), is associated with MVO, IMH and convalescent left ventricular (LV) remodelling.54 consecutive patients underwent CMR at 3T (Intera CV, Philips Healthcare, Best, The Netherlands) within 3 days of reperfused STEMI. Cine, T2-weighted, T2* and late gadolinium enhancement (LGE) imaging were performed. Infarct and MVO extent were measured from LGE images. The presence of IMH was investigated by combined analysis of T2w and T2* images. Averaged-MAPSE (medial-MAPSE+lateral-MAPSE/2) was calculated from 4-chamber cine imaging.44 patients completed the baseline scan and 38 patients completed 3-month scans. 26 (59%) patients had MVO and 25 (57%) patients had IMH. Presence of MVO and IMH were associated with lower averaged-MAPSE (11.7±0.4 mm vs 9.3±0.3 mm; p<0.001 and 11.8±0.4 mm vs 9.2±0.3 mm; p<0.001, respectively). IMH (β=-0.655, p<0.001) and MVO (β=-0.567, p<0.001) demonstrated a stronger correlation to MAPSE than other demographic and infarct characteristics. MAPSE ≤10.6 mm demonstrated 89% sensitivity and 72% specificity for the detection of MVO and 92% sensitivity and 74% specificity for IMH. LV remodelling in convalescence was not associated with MAPSE (AUC 0.62, 95% CI 0.44 to 0.77, p=0.22).Postreperfused STEMI, LV longitudinal function assessed by MAPSE can independently predict the presence of MVO and IMH

    Diabetes mellitus, microalbuminuria, and subclinical cardiac disease: Identification and monitoring of individuals at risk of heart failure

    Get PDF
    Background-Patients with type 2 diabetes mellitus and elevated urinary albumin:creatinine ratio (ACR) have increased risk of heart failure. We hypothesized this was because of cardiac tissue changes rather than silent coronary artery disease. Methods and Results-In a case-controlled observational study 130 subjects including 50 ACR+ve diabetes mellitus patients with persistent microalbuminuria (ACR > 2.5 mg/mol in males and > 3.5 mg/mol in females, ≥2 measurements, no previous renin- angiotensin-aldosterone therapy, 50 ACR-ve diabetes mellitus patients and 30 controls underwent cardiovascular magnetic resonance for investigation of myocardial fibrosis, ischemia and infarction, and echocardiography. Thirty ACR+ve patients underwent further testing after 1-year treatment with renin-angiotensin-aldosterone blockade. Cardiac extracellular volume fraction, a measure of diffuse fibrosis, was higher in diabetes mellitus patients than controls (26.1±3.4% and 23.3±3.0% P=0.0002) and in ACR+ve than ACR-ve diabetes mellitus patients (27.2±4.1% versus 25.1±2.9%, P=0.004). ACR+ve patients also had lower E0 measured by echocardiography (8.2±1.9 cm/s versus 8.9±1.9 cm/s, P=0.04) and elevated high-sensitivity cardiac troponin T 18% versus 4% ≥14 ng/L (P=0.05). Rate of silent myocardial ischemia or infarction were not influenced by ACR status. Renin-angiotensin-aldosterone blockade was associated with increased left ventricular ejection fraction (59.3±7.8 to 61.5±8.7%, P=0.03) and decreased extracellular volume fraction (26.5±3.6 to 25.2±3.1, P=0.01) but no changes in diastolic function or high-sensitivity cardiac troponin T levels. Conclusions-Asymptomatic diabetes mellitus patients with persistent microalbuminuria have markers of diffuse cardiac fibrosis including elevated extracellular volume fraction, high-sensitivity cardiac troponin T, and diastolic dysfunction, which may in part be reversible by renin-angiotensin-aldosterone blockade. Increased risk in these patients may be mediated by subclinical changes in tissue structure and function

    Athletic Cardiac Adaptation in Males Is a Consequence of Elevated Myocyte Mass.

    Get PDF
    Cardiac remodeling occurs in response to regular athletic training, and the degree of remodeling is associated with fitness. Understanding the myocardial structural changes in athlete's heart is important to develop tools that differentiate athletic from cardiomyopathic change. We hypothesized that athletic left ventricular hypertrophy is a consequence of increased myocardial cellular rather than extracellular mass as measured by cardiovascular magnetic resonance.Forty-five males (30 athletes and 15 sedentary age-matched healthy controls) underwent comprehensive cardiovascular magnetic resonance studies, including native and postcontrast T1 mapping for extracellular volume calculation. In addition, the 30 athletes performed a maximal exercise test to assess aerobic capacity and anaerobic threshold. Participants were grouped by athleticism: untrained, low performance, and high performance (O2max 60 mL/kg per min, respectively). In athletes, indexed cellular mass was greater in high- than low-performance athletes 60.7±7.5 versus 48.6±6.3 g/m(2); P<0.001), whereas extracellular mass was constant (16.3±2.2 versus 15.3±2.2 g/m(2); P=0.20). Indexed left ventricular end-diastolic volume and mass correlated with O2max (r=0.45, P=0.01; r=0.55, P=0.002) and differed significantly by group (P=0.01; P<0.001, respectively). Extracellular volume had an inverse correlation with O2max (r=-0.53, P=0.003 and left ventricular mass index (r=-0.44, P=0.02).Increasing left ventricular mass in athlete's heart occurs because of an expansion of the cellular compartment while the extracellular volume becomes relatively smaller: a difference which becomes more marked as left ventricular mass increases. Athletic remodeling, both on a macroscopic and cellular level, is associated with the degree of an individual's fitness. Cardiovascular magnetic resonance ECV quantification may have a future role in differentiating athlete's heart from change secondary to cardiomyopathy

    Acute Reverse Remodelling After Transcatheter Aortic Valve Implantation: A Link Between Myocardial Fibrosis and Left Ventricular Mass Regression

    Get PDF
    Background: Despite the wealth of data showing the positive effects on cardiac reverse remodelling in the long-term, the immediate effects of transcatheter aortic valve implantation (TAVI) on the left ventricle are yet to be comprehensively described using cardiovascular magnetic resonance imaging. Also, the link between myocardial fibrosis and acute left ventricular (LV) mass regression is unknown. Methods: Fifty-seven patients with severe aortic stenosis awaiting TAVI underwent paired cardiovascular magnetic resonance scans before and early after the procedure (4 [interquartile range, 3-5] days). LV mass, volume, and function were measured. Late gadolinium enhancement (LGE) imaging was performed to assess for the presence of and pattern of myocardial fibrosis. Results: After the procedure, 53 (95%) patients experienced an immediate (10.1 ± 7.1%) reduction in indexed LV mass (LVMi) from 76 ± 15.5 to 68.4 ± 14.7 g/m2 (P < 0.001). Those with no LGE experienced the greatest LVMi regression (13.9 ± 7.1%) compared with those with a midwall/focal fibrosis pattern LGE (7.4 ± 5.8%) and infarct pattern LGE (7.2 ± 7.0%; P = 0.005). There was no overall change in LV ejection fraction (LVEF; 55.1 ± 12.1% to 55.5 ± 10.9%; P = 0.867), however a significant improvement in LVEF was seen in those with abnormal (< 55%; n = 24; 42%) baseline LVEF (43.2 ± 8.9 to 46.7 ± 10.5%; P = 0.027). Baseline LVMi (P = 0.005) and myocardial fibrosis (P < 0.001) were strong independent predictors of early LVMi regression. Conclusions: LV reverse remodelling occurs immediately after TAVI, with significant LV mass regression in the total population and an improvement in LVEF in those with preexisting LV impairment. Those without myocardial fibrosis at baseline experience greater LV mass regression than those with fibrosis

    The utility of global longitudinal strain in the identification of prior myocardial infarction in patients with preserved left ventricular ejection fraction

    Get PDF
    Prior myocardial infarction (MI) is associated with increased mortality and is prevalent in certain high risk patient groups. Electrocardiogram may be used in diagnosis, however, sensitivity is limited, thus non-invasive imaging techniques may improve diagnosis. We investigated whether global longitudinal strain (GLS) and longitudinal strain parameters are reduced in patients with prior MI but preserved left ventricular ejection fraction (LVEF). The study included 40 clinical patients with prior MI occurring >3 months previously (defined as subendocardial hyperenhancement on late Gadolinium enhancement imaging) with LVEF ≥ 55% and 40 controls matched for age and LVEF. GLS, global longitudinal strain rate (GLSR) and early diastolic longitudinal strain rate (GLSRe) were measured from cine imaging feature tracking analysis. Presence of wall motion abnormality (WMA) and minimum systolic wall thickening (SWT) were calculated from cine imaging. GLS was −17.3 ± 3.7% in prior MI versus −19.3 ± 1.9% in controls (p = 0.012). GLSR was −88.0 ± 33.7%/s in prior MI versus −103.3 ± 26.5%/s in controls (p = 0.005). GLSRe was 76.4 ± 28.4%/s in prior MI versus 95.5 ± 26.0%/s in controls (p = 0.001). GLS accurately identified prior MI [AUC 0.662 (95% CI 0.54–0.785) p = 0.012] whereas WMA [AUC 0.500 (95% CI 0.386–0.614) p = 1.0] and minimum SWT [AUC 0.609 (95% CI 0.483–0.735) p = 0.093] did not. GLS, GLSR and GLSRe are reduced in prior MI with preserved LVEF. Normal LVEF and lack of WMA cannot exclude prior MI. Prior MI should be considered when reduced GLS, GLSR or GLSRe are detected by non-invasive imaging

    The role of left ventricular deformation in the assessment of microvascular obstruction and intramyocardial haemorrhage

    Get PDF
    In the setting of acute ST-elevation myocardial infarction (STEMI), it remains unclear which strain parameter most strongly correlates with microvascular obstruction (MVO) or intramyocardial haemorrhage (IMH). We aimed to investigate the association of MVO, IMH and convalescent left ventricular (LV) remodelling with strain parameters measured with cardiovascular magnetic resonance (CMR). Forty-three patients with reperfused STEMI and 10 age and gender matched healthy controls underwent CMR within 3-days and at 3-months following reperfused STEMI. Cine, T2-weighted, T2*-imaging and late gadolinium enhancement (LGE) imaging were performed. Infarct size, MVO and IMH were quantified. Peak global longitudinal strain (GLS), global radial strain (GRS), global circumferential strain (GCS) and their strain rates were derived by feature tracking analysis of LV short-axis, 4-chamber and 2-chamber cines. All 43 patients and ten controls completed the baseline scan and 34 patients completed 3-month scans. In multivariate regression, GLS demonstrated the strongest association with MVO or IMH (beta = 0.53, p 20%). Baseline GLS also demonstrated the strongest diagnostic performance in predicting adverse LV remodelling (AUC = 0.79; 95% CI 0.60–0.98; p = 0.03). Post-reperfused STEMI, baseline GLS was most closely associated with the presence of MVO or IMH. Baseline GLS was more strongly associated with adverse LV remodelling than other CMR parameters

    CRISPR transcriptional repression devices and layered circuits in mammalian cells

    Get PDF
    A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes.National Institutes of Health (U.S.) (Grant 5R01CA155320-04)National Institutes of Health (U.S.) (Grant P50 GM098792)Korea (South). Ministry of Science, Information and Communication Technolgy. Intelligent Synthetic Biology Center of Global Frontier Project (2013M3A6A8073557

    Geographical variation in radiological services: a nationwide survey

    Get PDF
    BACKGROUND: Geographical variation in health care services challenges the basic principle of fair allocation of health care resources. This study aimed to investigate geographical variation in the use of X-ray, CT, MRI and Ultrasound examinations in Norway, the contribution from public and private institutions, and the impact of accessibility and socioeconomic factors on variation in examination rates. METHODS: A nationwide survey of activity in all radiological institutions for the year 2002 was used to compare the rates per thousand of examinations in the counties. The data format was files/printouts where the examinations were recorded according to a code system. RESULTS: Overall rates per thousand of radiological examinations varied by a factor of 2.4. The use of MRI varied from 170 to 2, and CT from 216 to 56 examinations per 1000 inhabitants. Single MRI examinations (knee, cervical spine and head/brain) ranged high in variation, as did certain other spine examinations. For examination of specific organs, the counties' use of one modality was positively correlated with the use of other modalities. Private institutions accounted for 28% of all examinations, and tended towards performing a higher proportion of single examinations with high variability. Indicators of accessibility correlated positively to variation in examination rates, partly due to the figures from the county of Oslo. Correlations between examination rates and socioeconomic factors were also highly influenced by the figures from this county. CONCLUSION: The counties use of radiological services varied substantially, especially CT and MRI examinations. A likely cause of the variation is differences in accessibility. The coexistence of public and private institutions may be a source of variability, along with socioeconomic factors. The findings represent a challenge to the objective of equality in access to health care services, and indicate a potential for better allocation of overall health care resources. PREVIOUS PUBLICATION: The data applied in this article was originally published in Norwegian in: Børretzen I, Lysdahl KB, Olerud HM: Radiologi i Noreg – undersøkingsfrekvens per 2002, tidstrendar, geografisk variasjon og befolkningsdose. StrålevernRapport 2006:6. Østerås: The Norwegian Radiation Protection Authority. The Norwegian Radiation Protection Authority has given the authors permission to republish the data

    Comparative mortality of hemodialysis patients at for-profit and not-for-profit dialysis facilities in the United States, 1998 to 2003: A retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Concern lingers that dialysis therapy at for-profit (versus not-for-profit) hemodialysis facilities in the United States may be associated with higher mortality, even though 4 of every 5 contemporary dialysis patients receive therapy in such a setting.</p> <p>Methods</p> <p>Our primary objective was to compare the mortality hazards of patients initiating hemodialysis at for-profit and not-for-profit centers in the United States between 1998 and 2003. For-profit status of dialysis facilities was determined after subjects received 6 months of dialysis therapy, and mean follow-up was 1.7 years.</p> <p>Results</p> <p>Of the study population (<it>N </it>= 205,076), 79.9% were dialyzed in for-profit facilities after 6 months of dialysis therapy. Dialysis at for-profit facilities was associated with higher urea reduction ratios, hemoglobin levels (including levels above 12 and 13 g/dL [120 and 130 g/L]), epoetin doses, and use of intravenous iron, and less use of blood transfusions and lower proportions of patients on the transplant waiting-list (<it>P </it>< 0.05). Patients dialyzed at for-profit and at not-for-profit facilities had similar mortality risks (adjusted hazards ratio 1.02, 95% CI 0.99–1.06, <it>P </it>= 0.143).</p> <p>Conclusion</p> <p>While hemodialysis treatment at for-profit and not-for-profit dialysis facilities is associated with different patterns of clinical benchmark achievement, mortality rates are similar.</p
    corecore