413 research outputs found
A Nearly Linear-Time PTAS for Explicit Fractional Packing and Covering Linear Programs
We give an approximation algorithm for packing and covering linear programs
(linear programs with non-negative coefficients). Given a constraint matrix
with n non-zeros, r rows, and c columns, the algorithm computes feasible primal
and dual solutions whose costs are within a factor of 1+eps of the optimal cost
in time O((r+c)log(n)/eps^2 + n).Comment: corrected version of FOCS 2007 paper: 10.1109/FOCS.2007.62. Accepted
to Algorithmica, 201
Characterization of Reachable Attractors Using Petri Net Unfoldings
International audienceAttractors of network dynamics represent the long-term behaviours of the modelled system. Their characterization is therefore crucial for understanding the response and differentiation capabilities of a dynamical system. In the scope of qualitative models of interaction networks, the computation of attractors reachable from a given state of the network faces combinatorial issues due to the state space explosion. In this paper, we present a new algorithm that exploits the concurrency between transitions of parallel acting components in order to reduce the search space. The algorithm relies on Petri net unfoldings that can be used to compute a compact representation of the dynamics. We illustrate the applicability of the algorithm with Petri net models of cell signalling and regulation networks, Boolean and multi-valued. The proposed approach aims at being complementary to existing methods for deriving the attractors of Boolean models, while being %so far more generic since it applies to any safe Petri net
A Green's function approach to transmission of massless Dirac fermions in graphene through an array of random scatterers
We consider the transmission of massless Dirac fermions through an array of
short range scatterers which are modeled as randomly positioned -
function like potentials along the x-axis. We particularly discuss the
interplay between disorder-induced localization that is the hallmark of a
non-relativistic system and two important properties of such massless Dirac
fermions, namely, complete transmission at normal incidence and periodic
dependence of transmission coefficient on the strength of the barrier that
leads to a periodic resonant transmission. This leads to two different types of
conductance behavior as a function of the system size at the resonant and the
off-resonance strengths of the delta function potential. We explain this
behavior of the conductance in terms of the transmission through a pair of such
barriers using a Green's function based approach. The method helps to
understand such disordered transport in terms of well known optical phenomena
such as Fabry Perot resonances.Comment: 22 double spaced single column pages. 15 .eps figure
Consensus guidelines for the definition, detection and interpretation of immunogenic cell death.
Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation
International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors
Sodium-glucose cotransporter (SGLT) inhibitors are new oral antidiabetes medications shown to effectively reduce glycated hemoglobin (A1C) and glycemic variability, blood pressure, and body weight without intrinsic properties to cause hypoglycemia in people with type 1 diabetes. However, recent studies, particularly in individuals with type 1 diabetes, have demonstrated increases in the absolute risk of diabetic ketoacidosis (DKA). Some cases presented with near-normal blood glucose levels or mild hyperglycemia, complicating the recognition/diagnosis of DKAand potentially delaying treatment. Several SGLT inhibitors are currently under review by the U.S. Food and Drug Administration and European regulatory agencies as adjuncts to insulin therapy in people with type 1 diabetes. Strategies must be developed and disseminated to the medical community to mitigate the associated DKA risk. This Consensus Report reviews current data regarding SGLT inhibitor use and provides recommendations to enhance the safety of SGLT inhibitors in people with type 1 diabetes
Clinical targets for continuous glucose monitoring data interpretation : recommendations from the international consensus on time in range
Improvements in sensor accuracy, greater convenience and ease of use, and expanding reimbursement have led to growing adoption of continuous glucose monitoring (CGM). However, successful utilization of CGM technology in routine clinical practice remains relatively low. This may be due in part to the lack of clear and agreed-upon glycemic targets that both diabetes teams and people with diabetes can work toward. Although unified recommendations for use of key CGM metrics have been established in three separate peer-reviewed articles, formal adoption by diabetes professional organizations and guidance in the practical application of these metrics in clinical practice have been lacking. In February 2019, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address this issue. This article summarizes the ATTD consensus recommendations for relevant aspects of CGM data utilization and reporting among the various diabetes populations
Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
ϒ production in p–Pb collisions at √sNN=8.16 TeV
ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio
(Anti-)deuteron production in pp collisions at 1as=13TeV
The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)
Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV
Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe
- …