12,195 research outputs found
Symmetry energy from the nuclear collective motion: constraints from dipole, quadrupole, monopole and spin-dipole resonances
The experimental and theoretical studies of Giant Resonances, or more
generally of the nuclear collective vibrations, are a well established domain
in which sophisticated techniques have been introduced and firm conclusions
reached after an effort of several decades. From it, information on the nuclear
equation of state can be extracted, albeit not far from usual nuclear
densities. In this contribution, which complements other contributions
appearing in the current volume, we survey some of the constraints that have
been extracted recently concerning the parameters of the nuclear symmetry
energy. Isovector modes, in which neutrons and protons are in opposite phase,
are a natural source of information and we illustrate the values of symmetry
energy around saturation deduced from isovector dipole and isovector quadrupole
states. The isotopic dependence of the isoscalar monopole energy has also been
suggested to provide a connection to the symmetry energy: relevant theoretical
arguments and experimental results are thoroughly discussed. Finally, we
consider the case of the charge-exchange spin-dipole excitations in which the
sum rule associated with the total strength gives in principle access to the
neutron skin and thus, indirectly, to the symmetry energy.Comment: Updated version, with small corrections based on comments/suggestions
from the referee. 12 pages, 9 figures; submitted to EPJA "Special Issue on
Symmetry Energy
Hygrothermal effects on mechanical behavior of graphite/epoxy laminates beyond initial failure
An investigation was conducted to determine the critical load levels and associated cracking beyond which a multidirectional laminate can be considered as structurally failed. Graphite/epoxy laminates were loaded to different strain levels up to ultimate failure. Transverse matrix cracking was monitored by acoustic and optical methods. Residual stiffness and strength that were parallel and perpendicular to the cracks were determined and related to the environmental/loading history. Results indicate that cracking density in the transverse layers has no major effect on laminate residual properties as long as the angle ply layers retain their structural integrity. Exposure to hot water revealed that cracking had only a small effect on absorption and reduced swelling when these specimens were compared with uncracked specimens. Cracked, moist specimens showed a moderate reduction in strength when compared with their uncracked counterparts. Within the range of environmental/loading conditions of the present study, it is concluded that the transverse cracking process is not crucial in its effect on the structural performance of multidirectional composite laminates
Effect of pairing correlations on incompressibility and symmetry energy in nuclear matter and finite nuclei
The role of superfluidity in the incompressibility and in the symmetry energy
is studied in nuclear matter and finite nuclei. Several pairing interactions
are used: surface, mixed and isovector dependent. Pairing has a small effect on
the nuclear matter incompressibility at saturation density, but the effects are
significant at lower densities. The pairing effect on the centroid energy of
the isoscalar Giant Monopole Resonance (GMR) is also evaluated for Pb and Sn
isotopes by using a microscopic constrained-HFB approach, and found to change
at most by 10% the nucleus incompressibility . It is shown by using the
Local Density Approximation (LDA) that most of the pairing effect on the GMR
centroid come from the low-density nuclear surface.Comment: 9 pages, 6 figure
Knuthian Drawings of Series-Parallel Flowcharts
Inspired by a classic paper by Knuth, we revisit the problem of drawing
flowcharts of loop-free algorithms, that is, degree-three series-parallel
digraphs. Our drawing algorithms show that it is possible to produce Knuthian
drawings of degree-three series-parallel digraphs with good aspect ratios and
small numbers of edge bends.Comment: Full versio
Quantum nucleation in ferromagnets with tetragonal and hexagonal symmetries
The phenomenon of quantum nucleation is studied in a ferromagnet in the
presence of a magnetic field at an arbitrary angle. We consider the
magnetocrystalline anisotropy with tetragonal symmetry and that with hexagonal
symmetry, respectively. By applying the instanton method in the
spin-coherent-state path-integral representation, we calculate the dependence
of the rate of quantum nucleation and the crossover temperature on the
orientation and strength of the field for a thin film and for a bulk solid. Our
results show that the rate of quantum nucleation and the crossover temperature
depend on the orientation of the external magnetic field distinctly, which
provides a possible experimental test for quantum nucleation in nanometer-scale
ferromagnets.Comment: 19 pages and 3 figures, Final version and accepted by Phys. Rev. B
(Feb. B1 2001
Quantum Nucleation in a Ferromagnetic Film Placed in a Magnetic Field at an Arbitrary Angle
We study the quantum nucleation in a thin ferromagnetic film placed in a
magnetic field at an arbitrary angle. The dependence of the quantum nucleation
and the temperature of the crossover from thermal to quantum regime on the
direction and the strength of the applied field are presented. It is found that
the maximal value of the rate and that of the crossover temperature are
obtained at a some angle with the magnetic field, not in the direction of the
applied field opposite to the initial easy axis.Comment: 15 pages, RevTex, 3 PostScript figures. To appear in Phys. Rev.
Magnetic Field Dependence of Macroscopic Quantum Tunneling and Coherence of Ferromagnetic Particle
We calculate the quantum tunneling rate of a ferromagnetic particle of diameter in a magnetic field of arbitrary angle. We consider the
magnetocrystalline anisotropy with the biaxial symmetry and that with the
tetragonal symmetry. Using the spin-coherent-state path integral, we obtain
approximate analytic formulas of the tunneling rates in the small -limit for the magnetic field normal to the easy axis (), for the field opposite to the initial easy axis (),
and for the field at an angle between these two orientations (). In addition, we obtain numerically the tunneling rates for
the biaxial symmetry in the full range of the angle of the magnetic
field (), for the values of \epsilon =0.01 and
0.001.Comment: 25 pages of text (RevTex) and 4 figures (PostScript files), to be
published in Phys. Rev.
Quantum phase interference and spin parity in Mn12 single-molecule magnets
Magnetization measurements of Mn12 molecular nanomagnets with spin ground
states of S = 10 and S = 19/2 showresonance tunneling at avoided energy level
crossings. The observed oscillations of the tunnel probability as a function of
the magnetic field applied along the hard anisotropy axis are due to
topological quantum phase interference of two tunnel paths of opposite
windings. Spin-parity dependent tunneling is established by comparing the
quantum phase interference of integer and half-integer spin systems.Comment: 5 pages, 5 figure
Decoherence in Ion Trap Quantum Computers
The {\it intrinsic} decoherence from vibrational coupling of the ions in the
Cirac-Zoller quantum computer [Phys. Rev. Lett. {\bf 74}, 4091 (1995)] is
considered. Starting from a state in which the vibrational modes are at a
temperature , and each ion is in a superposition of an excited and a ground
state, an adiabatic approximation is used to find the inclusive probability
for the ions to evolve as they would without the vibrations, and for the
vibrational modes to evolve into any final state. An analytic form is found for
at , and the decoherence time is found for all . The decoherence
is found to be quite small, even for 1000 ions.Comment: 11 pages, no figures, uses revte
Identification of Non-unitary triplet pairing in a heavy Fermion superconductor UPt_3
A NMR experiment recently done by Tou et al. on a heavy Fermion
superconductor UPt is interpreted in terms of a non-unitary spin-triplet
pairing state which we have been advocating. The proposed state successfully
explains various aspects of the seemingly complicated Knight shift behaviors
probed for major orientations, including a remarkable d-vector rotation under
weak fields. This entitles UPt as the first example that a charged many
body system forms a spin-triplet odd-par ity pairing at low temperatures and
demonstrates unambiguously that the putative spin-orbit coupling in UPt is
weak.Comment: 4 pages, 2 eps figures, to be published in J. Phys. Soc. Jpn. 67
(1998) No.
- …