20 research outputs found

    Cancer therapy shapes the fitness landscape of clonal hematopoiesis.

    Get PDF
    Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies

    Potassium loss and cellular dehydration of stored erythrocytes following incubation in autologous plasma: role of the KCl cotransport system

    No full text
    We studied the regulation of cell volume and cation content in erythrocytes stored at 4 degrees C under blood bank conditions for various lengths of time and subsequently incubated in autologous plasma at 37 degrees C for 4 or 24 h. Cell swelled during storage at 4 degrees C whereas marked K+ loss and cell shrinkage were observed when erythrocytes were incubated at 37 degrees C in autologous plasma. The cell shrinkage was inhibited only by the K+ Cl- cotransport-specific inhibitor, [(dihydroindenyl)oxy] alkanoic acid, and not by other specific inhibitors of cation transport systems such as ouabain (Na(+)-K+ ATPase pump), bumetanide (Na(+)-K(+)-Cl- cotransport) or carbocyanine (Ca+(+)-activated K+ channel). Acidification and swelling of the erythrocytes are well known to be able to activate the K+ Cl cotransport; such conditions, which were demonstrated to occur during the storage, could lead to activation of the K+ Cl- cotransport in reinfused cells. These data strongly support the evidence that K+ Cl- cotransport plays a role in K+ loss and dehydration of stored erythrocytes, when incubated in autologous plasma
    corecore