9,257 research outputs found
Study of the volume and spin collapse in orthoferrite LuFeO_3 using LDA+U
Rare earth (R) orthoferrites RFeO_3 exhibit large volume transitions
associated with a spin collapse. We present here ab initio calculations on
LuFeO_3. We show that taking into account the strong correlation among the
Fe-3d electrons is necessary. Indeed, with the LDA+U method in the Projector
Augmented Wave (PAW), we are able to describe the isostructural phase
transition at 50 GPa, as well as a volume discontinuity of 6.0% at the
transition and the considerable reduction of the magnetic moment on the Fe
ions. We further investigate the effect of the variation of U and J and find a
linear dependence of the transition pressure on these parameters. We give an
interpretation for the non-intuitive effect of J. This emphasizes the need for
a correct determination of these parameters especially when the LDA+U is
applied to systems (e.g in geophysical investigations) where the transition
pressure is a priori unknown
GOLLUM: a next-generation simulation tool for electron, thermal and spin transport
We have developed an efficient simulation tool 'GOLLUM' for the computation
of electrical, spin and thermal transport characteristics of complex
nanostructures. The new multi-scale, multi-terminal tool addresses a number of
new challenges and functionalities that have emerged in nanoscale-scale
transport over the past few years. To illustrate the flexibility and
functionality of GOLLUM, we present a range of demonstrator calculations
encompassing charge, spin and thermal transport, corrections to density
functional theory such as LDA+U and spectral adjustments, transport in the
presence of non-collinear magnetism, the quantum-Hall effect, Kondo and Coulomb
blockade effects, finite-voltage transport, multi-terminal transport, quantum
pumps, superconducting nanostructures, environmental effects and pulling curves
and conductance histograms for mechanically-controlled-break-junction
experiments.Comment: 66 journal pages, 57 figure
Electronic transport calculations for rough interfaces in Al, Cu, Ag, and Au
We present results of electronic structure and transport calculations for
metallic interfaces, based on density functional theory and the non-equilibrium
Green's functions method. Starting from the electronic structure of smooth Al,
Cu, Ag, and Au interfaces, we study the effects of different kinds of interface
roughness on the transmission coefficient and the I-V characteristic. In
particular, we compare prototypical interface distortions, including vacancies
and metallic impurities.Comment: 15 pages, 10 figure
A simulation analysis of a microalgal-production plant for the transformation of inland-fisheries wastewater in sustainable feed
The present research evaluates the simulation of a system for transforming inland-fisheries wastewater into sustainable fish feed using Designer® software. The data required were obtained from the experimental cultivation of Chlorella sp. in wastewater supplemented with N and P. According to the results, it is possible to produce up to 11,875 kg/year (31.3 kg/d) with a production cost of up to 18 (USD/kg) for dry biomass and 0.19 (USD/bottle) for concentrated biomass. Similarly, it was possible to establish the kinetics of growth of substrate-dependent biomass with a maximum production of 1.25 g/L after 15 days and 98% removal of available N coupled with 20% of P. It is essential to note the final production efficiency may vary depending on uncontrollable variables such as climate and quality of wastewater, among others
Recommended from our members
Search for physics beyond the standard model in events with τ leptons, jets, and large transverse momentum imbalance in pp collisions at [Formula: see text].
A search for physics beyond the standard model is performed with events having one or more hadronically decaying τ leptons, highly energetic jets, and large transverse momentum imbalance. The data sample corresponds to an integrated luminosity of 4.98 fb-1 of proton-proton collisions at [Formula: see text] collected with the CMS detector at the LHC in 2011. The number of observed events is consistent with predictions for standard model processes. Lower limits on the mass of the gluino in supersymmetric models are determined
Recommended from our members
Search for supersymmetry in hadronic final states with missing transverse energy using the variables αT and b-quark multiplicity in pp collisions at [Formula: see text].
An inclusive search for supersymmetric processes that produce final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of 8 TeV. The data sample corresponds to an integrated luminosity of 11.7 fb-1 collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, αT, is used to discriminate between events with genuine and misreconstructed missing transverse energy. The search is based on an examination of the number of reconstructed jets per event, the scalar sum of transverse energies of these jets, and the number of these jets identified as originating from bottom quarks. No significant excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of simplified models, with a special emphasis on both compressed-spectrum scenarios and direct or gluino-induced production of third-generation squarks. For the case of gluino-mediated squark production, gluino masses up to 950-1125 GeV are excluded depending on the assumed model. For the direct pair-production of squarks, masses up to 450 GeV are excluded for a single light first- or second-generation squark, increasing to 600 GeV for bottom squarks
Chronos - take the pulse of our galactic neighbourhood: After Gaia: Time domain information, masses and ages for stars
Understanding our Galaxy’s structure, formation, and evolution will, over the next decades, continue to benefit from the wonderful large survey by Gaia, for astrometric, kinematic, and spectroscopic characterization, and by large spectroscopic surveys for chemical characterization. The weak link for full exploitation of these data is age characterization, and stellar age estimation relies predominantly on mass estimates. The ideas presented in this White Paper shows that a seismology survey is the way out of this situation and a natural complement to existing and planned surveys. These ideas are strongly rooted in the past decade’s experience of the so-called Seismology revolution, initiated with CoRoT and Kepler. The case of red giant stars is used here as the best current illustration of what we can expect from seismology for large samples, but premises for similar developments exist in various other classes of stars covering other ranges of age or mass. Whatever the star considered, the first information provided by stellar pulsations is always related to the mean density and thus to the mass (and age). In order to satisfy the need for long-duration and all-sky coverage, we rely on a new instrumental concept which decouples integration time and sampling time. We thus propose a long (~1 year) all-sky survey which would perfectly fit between TESS, PLATO, and the Rubin Observatory (previously known as LSST) surveys to offer a time domain complement to the current and planned astrometric and spectroscopic surveys. The fine characterization of host stars is also a key aspect for the interpretation and exploitation of the various projects -- anticipated in the framework of the Voyage 2050 programme -- searching for atmospheric characterization of terrestrial planets or, more specifically, looking for a signature of life, in distant planets
Recommended from our members
Probing color coherence effects in pp collisions at [Formula: see text].
A study of color coherence effects in pp collisions at a center-of-mass energy of 7[Formula: see text] is presented. The data used in the analysis were collected in 2010 with the CMS detector at the LHC and correspond to an integrated luminosity of 36 pb[Formula: see text]. Events are selected that contain at least three jets and where the two jets with the largest transverse momentum exhibit a back-to-back topology. The measured angular correlation between the second- and third-leading jet is shown to be sensitive to color coherence effects, and is compared to the predictions of Monte Carlo models with various implementations of color coherence. None of the models describe the data satisfactorily
Density functional calculations of nanoscale conductance
Density functional calculations for the electronic conductance of single
molecules are now common. We examine the methodology from a rigorous point of
view, discussing where it can be expected to work, and where it should fail.
When molecules are weakly coupled to leads, local and gradient-corrected
approximations fail, as the Kohn-Sham levels are misaligned. In the weak bias
regime, XC corrections to the current are missed by the standard methodology.
For finite bias, a new methodology for performing calculations can be
rigorously derived using an extension of time-dependent current density
functional theory from the Schroedinger equation to a Master equation.Comment: topical review, 28 pages, updated version with some revision
- …