79 research outputs found

    Preface "Nonlinear processes in oceanic and atmospheric flows"

    Get PDF
    Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on ``Nonlinear Processes in Oceanic and Atmospheric Flows'' contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Ni\~no Southern Oscillation.Comment: This is the introductory article to a Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows'', published in the journal Nonlinear Processes in Geophysics, where the different contributions are summarized. The Special Issue itself is freely available from http://www.nonlin-processes-geophys.net/special_issue103.htm

    N-(4-{4-[2-(Trifluoro­meth­oxy)phen­yl]piperazin-1-yl}but­yl)thio­phene-2-carboxamide dihydrate

    Get PDF
    In the title compound, C20H24F3N3O2S·2H2O, a dopamine D3 ligand, the piperazine ring adopts a chair conformation while the piperazine and benzene rings form a dihedral angle of 47.71 (6)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. In the mol­ecular structure, the F atoms of the trifluoro­methyl group are disordered over two sites with occupancies of 0.69 (11) and 0.31 (11)

    Sensor monitoring strategy

    Get PDF
    In its overall strategy, COMMON SENSE work packages (11) can be grouped into 3 key phases: (1) RD basis for cost-effective sensor development, (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the Phase 1, within WP1 and WP2, partners have provided a general understanding and integrated basis for a cost effective sensors development. In Phase 2, within the WP3 and WPs 4 to 8, the new sensors have been created and planned to be integrated into instruments for the different identified platforms and how data produced will be processed, organised and saved. During the phase 3, within WP9, partners are deploying precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; Task 9.2), these platforms are permitting the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made and correct observed deviations. Sensor monitoring strategy (Deliverable 2.4 for Task 2.5) is the last task within Phase 1. As the other tasks in Phase 1 it has to provide a basis for designing field testing activities to be useful. That is how to validate the performance of sensors, integration, data acquisition, transmission, under real conditions in different platforms. Since there is a wide sensor variety, each one with its own characteristics, and several platforms, to prepare a general methodological review and give the corresponding directions as it was initially planned, would be a huge and useless effort. Given the initially fixed calendar a first version of the present deliverable was presented when most of the sensors were still not developed. The document addressed how projected sensors should be tested, their limitations and conditions for their monitoring and final certification. Now, when D2.2 (Procedures of sensors deployment methodology on physical supports/platforms) has been rewritten (May 2016), all sensors are fully developed and most of them have started their tests at sea, the present new updated version of the deliverable becomes more precise, with much better knowledge on the real sensors and their performance. In addition, a complete new chapter on data transmission –initially proposed but not developed in the previous version– is included. The information from the six sensor developers in COMMON SENSE on which the initial plan on where and how to test each sensor that was presented in D9.1 (April 2015) has been updated (May 2016). The update includes the final properties of sensors after the respective full laboratory tests and even some of the results from field tests that had been carried out starting August 2015. This task assesses field testing procedures and deployment specificities. Two tables are presented based on the information of the report for D9.1 delivered in April 2015. One table was created for sensor developers and one for those who will test the sensors at sea. In this report some information from the testers’ table is shown and updated according to the new version of D2.2 (May 2016) for platforms. Objectives and rationale The objective of Task 2.5 within the WP2 is the definition of sensor monitoring strategy based on the premises for water monitoring, sensor performances and data storage and transmission. For any new sensor, available instruments currently used in the oceanographic studies will be identified to perform comparisons. Suitable transmission technology will be selected according to the test conditions: open sea, coastal areas, remote locations, etc. Sensitivity and stress tests will be designed in order to establish confidence limits under different environmental situations, so that the results obtained in the testing exercises (WP9) will enable to certify the performance of the new instruments

    Review of existing and operable observing systems and sensors

    Get PDF
    Deliverable 1.4 is aimed at identification of existing and operable observing systems and sensors which are relevant to COMMON SENSE objectives. Report aggregates information on existing observing initiatives, programmes, systems, platforms and sensors. The Report includes: • inventory of previous and current EU funded projects. Some of the them, even if started before 2007, were aimed at activities which are relevant or in line with those stemming from MSFD in 2008. The ‘granulation’ of the contents and objectives of the projects varies from sensors development through observation methodologies to monitoring strategies, • inventory of research infrastructure in Europe. It starts from an attempt to define of Marine Research Infrastructure, as there is not a single definition of Research Infrastructure (RI) or of Marine Research Infrastructure (MRI), and there are different ways to categorise them. The chapter gives the categorization of the MRI, together with detailed description and examples of MRI – research platforms, marine data systems, research sites and laboratories with respect of four MSFD descriptors relevant to COMMON SENSE project, • two chapters on Research Programs and Infrastructure Networks; the pan-European initiatives aimed at cooperation and efficient use of infrastructural resources for marine observation and monitoring and data exchange are analysed. The detailed description of observing sensors and system are presented as well as frameworks for cooperation, • information on platforms (research vessels) available to the Project for testing developed sensors and systems. Platforms are available and operating in all three regions of interest to the project (Mediterranean, North Sea, Baltic), • annexed detailed description of two world-wide observation networks and systems. These systems are excellent examples of added value offered by integrated systems of ocean observation (from data to knowledge) and how they work in practice. Report concludes that it is seen a shortage of new classes of sensors to fulfil the emerging monitoring needs. Sensors proposed to be developed by COMMON SENSE project shall answer to the needs stemmed from introduction of MSFD and GES descriptors

    Protocols for the field testing

    Get PDF
    The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77). In an overall strategy of the work plan, work packages (11) can be grouped into 3 key phases: (1) RD basis for cost-effective sensor development, (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases WP1 and WP2 partners have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors are created and integrated into different identified platforms. During the third phase 3, characterized by WP9, partners will deploy precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms will allow the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations. In task 9.1 all stakeholders identified in WP2, and other relevant agents, have been contacted in order to close a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, are closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information will provide the basis for designing and coordinating field testing activities. Type and characteristics of the system (vessel or mooring, surface or deep, open sea or coastal area, duration, etc.), used for the field testing activities, are planned comprising the indicators included in the above-mentioned descriptors, taking into account that they must of interest for eutrophication, concentration of contaminants, marine litter and underwater noise. In order to obtain the necessary information, two tables were realized starting from the information acquired for D2.2 delivered in June 2014. One table was created for sensor developers and one for those partners that will test the sensors at sea. The six developers in COMMON SENSE have provided information on the seven sensors: CEFAS and IOPAN for underwater noise; IDRONAUT and LEITAT for microplastics; CSIC for an innovative piro and piezo resistive polymeric temperature and pressure and for heavy metal; DCU for the eutrophication sensor. This information is anyway incomplete because in most cases the novel sensors are still far to be ready and will be developed over the course of COMMON SENSE. So the sensors cannot be clearly designed yet and, consequently, technical characteristics cannot still be perfectly defined. This produces some lag in the acquired information and, consequently, in the planning of their testing on specific platforms that will be solved in the near future. In the table for Testers, partners have provided information on fifteen available platforms. Specific answers have been given on number and type of sensors on each platforms, their availability and technical characteristics, compatibility issues and, very important when new sensors are tested, comparative measurements to be implemented to verify them. Finally IOPAN has described two more platforms, a motorboat not listed in the DoW, but already introduced in D2.2, and their oceanographic buoy in the Gdansk Bay that was previously unavailable. The same availability now is present for the OBSEA Underwater observatory from CSIC, while their Aqualog undulating mooring is still not ready for use. In the following months, new information on sensors and platforms will be provided and the planning of testing activities will improve. Further updates of this report will be therefore necessary in order to individuate the most suitable platforms to test each kind of sensor. Objectives and rationale The objective of deliverable 9.1 is the definition of field testing procedures (WP2), the study of deployment specificities during sensor development work packages (from WP4 to WP8) and the preparation of protocols. This with the participation of all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment

    Field testing, validation and optimization report

    Get PDF
    The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77). As the overall strategy, the 11 work packages (WPs) of the work plan were grouped into 3 key phases: (1) RD basis for cost-effective sensor development , (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases, partners involved in WP1 and WP2 have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors were created and integrated into different identified platforms. During the third phase of field testing (WP9), partners have deployed precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms have allowed the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations. In task 9.1 all stakeholders identified in WP2 have been contacted in order to agree upon a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, have been closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information have provided the basis for designing and coordinating field testing activities. Subsequently, the available new sensors have been tested since August 2015 till mid-October of the current year (2016) as part of task 9.2, following the indications defined in D9.1, such as the intercomparison of the new sensors with commercial ones, when possible. The availability of new sensors was quite different in time starting with the first tests in September and October 2015 on noise, nutrient and heavy metals sensors and closing with pCO2 in late September 2016. Sensors are technically fully described in the deliverables of WPs 3 to 8 and are here just mentioned where necessary. For further details, please consider those reports. Objectives and rationale The protocols prepared in D9.1 have been verified during the field testing activities of the innovative sensors on platforms. These can be summarized into 3 categories: (1) Research vessels (regular cruises); (2) Fixed platforms; (3) Ocean racing yachts. An exhaustive analysis of the different data obtained during field testing activities has been carried on in order to set possible optimization actions for prototypes design and performances. The data from each platform have been analyzed to verify limits and optimal installations or possible improvements. Finally a set of possible optimization actions has been defined. Data and observations collected during the course of field testing have been used to iteratively optimize the design and performance of the precompetitive prototypes

    Analysis of relevant technical issues and deficiencies of the existing sensors and related initiatives currently set and working in marine environment. New generation technologies for cost-effective sensors

    Get PDF
    The last decade has seen significant growth in the field of sensor networks, which are currently collecting large amounts of environmental data. This data needs to be collected, processed, stored and made available for analysis and interpretation in a manner which is meaningful and accessible to end users and stakeholders with a range of requirements, including government agencies, environmental agencies, the research community, industry users and the public. The COMMONSENSE project aims to develop and provide cost-effective, multi-functional innovative sensors to perform reliable in-situ measurements in the marine environment. The sensors will be easily usable across several platforms, and will focus on key parameters including eutrophication, heavy metal contaminants, marine litter (microplastics) and underwater noise descriptors of the MSFD. The aims of Tasks 2.1 and 2.2 which comprise the work of this deliverable are: • To obtain a comprehensive understanding and an up-to-date state of the art of existing sensors. • To provide a working basis on “new generation” technologies in order to develop cost-effective sensors suitable for large-scale production. This deliverable will consist of an analysis of state-of-the-art solutions for the different sensors and data platforms related with COMMONSENSE project. An analysis of relevant technical issues and deficiencies of existing sensors and related initiatives currently set and working in marine environment will be performed. Existing solutions will be studied to determine the main limitations to be considered during novel sensor developments in further WP’s. Objectives & Rationale The objectives of deliverable 2.1 are: • To create a solid and robust basis for finding cheaper and innovative ways of gathering data. This is preparatory for the activities in other WPs: for WP4 (Transversal Sensor development and Sensor Integration), for WP(5-8) (Novel Sensors) to develop cost-effective sensors suitable for large-scale production, reducing costs of data collection (compared to commercially available sensors), increasing data access availability for WP9 (Field testing) when the deployment of new sensors will be drawn and then realized

    The MEDESS-GIB database: Tracking the Atlantic water inflow

    Full text link
    On 9 September 2014, an intensive drifter deployment was carried out in the Strait of Gibraltar. In the frame of the MEDESS-4MS Project (EU MED Program), the MEDESS-GIB experiment consisted of the deployment of 35 satellite tracked drifters, mostly of CODE-type, equipped with temperature sensor sampling at a rate of 30min. Drifters were distributed along and on both sides of the Strait of Gibraltar. The MEDESS-GIB deployment plan was designed as to ensure quasi-synoptic spatial coverage. To this end, four boats covering an area of about 680NM2 in 6h were coordinated. As far as these authors know, this experiment is the most important exercise in the area in terms of number of drifters released. Collected satellite-tracked data along drifter trajectories have been quality controlled and processed to build the presented MEDESS-GIB database. This paper reports the MEDESS-GIB data set that comprises drifter trajectories, derived surface currents and in situ SST measurements collected along the buoys tracks. This series of data is available through the PANGAEA (Data Publisher for Earth and Environmental Science) repository, with the following doi:10.1594/PANGAEA.853701. Likewise, the MEDESS-GIB data will be incorporated as part of the Copernicus Marine historical products. The MEDESS-GIB data set provides a complete Lagrangian view of the surface inflow of Atlantic waters through the Strait of Gibraltar and thus, very useful data for further studies on the surface circulation patterns in the Alboran Sea, and their links with one of the most energetic Mediterranean Sea flows: the Algerian Current

    Organic pollutants in sea-surface microlayer and aerosol in thecoastal environment of Leghorn—(Tyrrhenian Sea)

    Get PDF
    The levels of dissolved and particle-associated n-alkanes, alkylbenzenes, phthalates, PAHs, anionic surfactants and surfactant fluorescent organic matter ŽSFOM. were measured in sea-surface microlayer ŽSML. and sub-surface water ŽSSL. samples collected in the Leghorn marine environment in September and October 1999. Nine stations, located in the Leghorn harbour and at increasing distances from the Port, were sampled three times on the same day. At all the stations, SML concentrations of the selected organic compounds were significantly higher than SSL values and the enrichment factors ŽEFsSML concentrationrSSL concentration. were greater in the particulate phase than in the dissolved phase. SML concentrations varied greatly among the sampling sites, the highest levels Žn-alkanes 3674 mgrl, phthalates 177 mgrl, total PAHs 226 mgrl. being found in the particulate phase in the Leghorn harbour. To improve the knowledge on pollutant exchanges between sea-surface waters and atmosphere, the validity of spray drop adsorption model ŽSDAM. was verified for SFOM, surface-active agents, such as phthalates, and compounds which can interact with SFOM, such as n-alkanes and PAHs. q2001 Elsevier Science B.V. All rights reserved
    corecore