506 research outputs found

    Rapid diagnosis of human brucellosis by SYBR Green I-based real-time PCR assay and melting curve analysis in serum samples

    Get PDF
    SUMMARYThe aim of this study was to develop a LightCycler-based real-time PCR (LC-PCR) assay and to evaluate its diagnostic use for the detection of Brucella DNA in serum samples. Following amplification of a 223-bp gene sequence encoding an immunogenetic membrane protein (BCSP31) specific for the Brucella genus, melting curve and DNA sequencing analysis was performed to verify the specificity of the PCR products. The intra- and inter-assay variation coefficients were 1.3% and 6.4%, respectively, and the detection limit was 5 fg of Brucella DNA (one genome equivalent). After optimisation of the PCR assay conditions, a standard curve was obtained with a linear range (correlation coefficient = 0.99) over seven orders of magnitude from 107 to 10 fg of Brucella DNA. The LC-PCR assay was found to be 91.9% sensitive and 95.4% specific when tested with 65 negative control samples and 62 serum samples from 60 consecutive patients with active brucellosis. The assay is reproducible, easily standardised, minimises the risk of infection in laboratory workers, and has a total processing time of < 2 h. It could therefore form a promising and practical approach for the rapid diagnosis of human brucellosis

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Trends and outcome of neoadjuvant treatment for rectal cancer: A retrospective analysis and critical assessment of a 10-year prospective national registry on behalf of the Spanish Rectal Cancer Project

    Get PDF
    Introduction: Preoperative treatment and adequate surgery increase local control in rectal cancer. However, modalities and indications for neoadjuvant treatment may be controversial. Aim of this study was to assess the trends of preoperative treatment and outcomes in patients with rectal cancer included in the Rectal Cancer Registry of the Spanish Associations of Surgeons. Method: This is a STROBE-compliant retrospective analysis of a prospective database. All patients operated on with curative intention included in the Rectal Cancer Registry were included. Analyses were performed to compare the use of neoadjuvant/adjuvant treatment in three timeframes: I)2006–2009; II)2010–2013; III)2014–2017. Survival analyses were run for 3-year survival in timeframes I-II. Results: Out of 14, 391 patients, 8871 (61.6%) received neoadjuvant treatment. Long-course chemo/radiotherapy was the most used approach (79.9%), followed by short-course radiotherapy ± chemotherapy (7.6%). The use of neoadjuvant treatment for cancer of the upper third (15-11 cm) increased over time (31.5%vs 34.5%vs 38.6%, p = 0.0018). The complete regression rate slightly increased over time (15.6% vs 16% vs 18.5%; p = 0.0093); the proportion of patients with involved circumferential resection margins (CRM) went down from 8.2% to 7.3%and 5.5% (p = 0.0004). Neoadjuvant treatment significantly decreased positive CRM in lower third tumors (OR 0.71, 0.59–0.87, Cochrane-Mantel-Haenszel P = 0.0008). Most ypN0 patients also received adjuvant therapy. In MR-defined stage III patients, preoperative treatment was associated with significantly longer local-recurrence-free survival (p < 0.0001), and cancer-specific survival (p < 0.0001). The survival benefit was smaller in upper third cancers. Conclusion: There was an increasing trend and a potential overuse of neoadjuvant treatment in cancer of the upper rectum. Most ypN0 patients received postoperative treatment. Involvement of CRM in lower third tumors was reduced after neoadjuvant treatment. Stage III and MRcN + benefited the most

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl
    • …
    corecore