7 research outputs found

    Picoplankton diel variability and estimated growth rates in epipelagic and mesopelagic waters of the central Red Sea

    Get PDF
    The diel variability of the abundance and cell size of picoplanktonic groups in the central Red Sea was monitored every 2 h in situ on 4 occasions (once per season) from 2015 to 2016. We distinguished Prochlorococcus, low (LF-Syn) and high (HF-Syn) fluorescence Synechococcus, small (Speuk) and large (Lpeuk) picoeukaryotes and two groups of heterotrophic prokaryotes of low (LNA) and high (HNA) nucleic acid content. The diel variability in abundance was less marked than in cell size and more apparent in autotrophs than heterotrophs. Specific growth rates were estimated by an empirical relationship from measurements obtained in bottle incubations of surface and deep samples collected in the winter compared with in situ variations in cell size over 24 h. Autotrophic picoplankton groups generally grew faster (0.23–0.77 d–1) than heterotrophic prokaryotes (0.12–0.50 d–1). Surface to 100 m depth-weighted specific growth rates displayed a clear seasonal pattern for Prochlorococcus, with maxima in winter (0.77 ± 0.07 d–1) and minima in fall (0.52 ± 0.07 d–1). The two groups of Synechococcus peaked in spring, with slightly higher growth rates of LF-Syn (0.57 ± 0.04 d–1) than HF-Syn (0.43 ± 0.04 d–1). Speuk and Lpeuk showed different seasonal patterns, with lower values of the former (0.27 ± 0.02 and 0.37 ± 0.04 d–1, respectively). HNA consistently outgrew LNA heterotrophic prokaryotes, with a higher growth in the epipelagic (0–200 m, 0.36 ± 0.03 d–1) than in the mesopelagic (200–700 m, 0.26 ± 0.03 d–1), while no differences were found for LNA cells (0.19 ± 0.03 d–1 and 0.17 ± 0.02 d–1, respectively). With all data pooled, the mean diel abundances of autotrophic picoplankton in the upper epipelagic and of HNA cells in the epipelagic and mesopelagic layers were significantly correlated with the specific growth rates estimated from cell size variations. Our high-resolution sampling dataset suggests that changes in growth rates underlie the noticeable seasonality of picoplankton recently described in these tropical waters

    Cytometric Diversity of Marine Bacterioplankton: A 10 Years Interannual study In the Southern Bay of Biscay.

    Get PDF
    The application of molecular methods to marine ecology in the last decades has completely changed our view of the patterns of diversity and distribution of microorganisms in the ocean (Giovannoni et al. 1990, Zinger et al. 2012). However, these methods are expensive and time-consuming when applied on a large number of samples. Flow-cytometry, on the other hand, allows an efficient and rapid processing of a large number of samples. In this sense, the use of single-cell measurements by flow-cytometry for diversity purposes would be a great advance. In marine ecosystems, this concept has been introduced by Li 1997 as `cytometric diversity'. OBJECTIVES: In this study we evaluated the power of cytometric diversity to detect changes in the composition of bacterioplankton communities: Cant 1) By comparing changes in bacterial composition of 3.5 years surface samples obtained by cytometric diversity and molecular approaches. 2) Analysing the cytometric diversity patterns of a set of 10-years monthly bacterioplankton flow-cytometry samples for 3 coastal stations

    Diel dynamics of dissolved organicmatter and heterotrophic prokaryotes reveal enhanced growth at the ocean's mesopelagic fish layer during daytime

    Get PDF
    Contrary to epipelagic waters, where biogeochemical processes closely follow the light and dark periods, little is known about diel cycles in the ocean's mesopelagic realm. Here, we monitored the dynamics of dissolved organic matter (DOM) and planktonic heterotrophic prokaryotes every 2 h for one day at 0 and 550 m (a depth occupied by vertically migrating fishes during light hours) in oligotrophic waters of the central Red Sea. We additionally performed predator-free seawater incubations of samples collected from the same site both at midnight and at noon. Comparable in situ variability in microbial biomass and dissolved organic carbon concentration suggests a diel supply of fresh DOM in both layers. The presence of fishes in the mesopelagic zone during daytime likely promoted a sustained, longer growth of larger prokaryotic cells. The specific growth rates were consistently higher in the noon experiments from both depths (surface: 0.34 vs. 0.18 d-1, mesopelagic: 0.16 vs. 0.09 d-1). Heterotrophic prokaryotes in the mesopelagic layer were also more efficient at converting extant DOM into new biomass. These results suggest that the ocean's twilight zone receives a consistent diurnal supply of labile DOM from the diel vertical migration of fishes, enabling an unexpectedly active community of heterotrophic prokaryotes

    Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain

    Get PDF
    Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24–34°C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94–1.38 d–1, was very similar (0.34 ± 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38–24.4 d–1). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules

    Changes in population age-structure obscure the temperature-size rule in marine cyanobacteria

    Get PDF
    The temperature-size Rule (TSR) states that there is a negative relationship between ambient temperature and body size. This rule has been independently evaluated for different phases of the life cycle in multicellular eukaryotes, but mostly for the average population in unicellular organisms. We acclimated two model marine cyanobacterial strains (Prochlorococcus marinus MIT9301 and Synechococcus sp. RS9907) to a gradient of temperatures and measured the changes in population age-structure and cell size along their division cycle. Both strains displayed temperature-dependent diel changes in cell size, and as a result, the relationship between temperature and average cell size varied along the day. We computed the mean cell size of new-born cells in order to test the prediction of the TSR on a single-growth stage. Our work reconciles previous inconsistent results when testing the TSR on unicellular organisms, and shows that when a single-growth stage is considered the predicted negative response to temperature is revealed.VersiĂłn del edito

    Automated clustering of heterotrophic bacterioplankton in flow cytometry data

    Get PDF
    Flow cytometry has become a standard method to analyze bacterioplankton. Analysis of samples by flow cytometry is automatic, but it is followed by manual classification of the bacterioplankton groups in flow cytometry standard (FCS) files. This classification is a time consuming and subjective task performed by manually drawing the limits of the groups present in cytograms, a process referred to as gating. The automation of flow cytometry data processing based on pattern recognition techniques could provide an efficient tool to overcome some of these disadvantages. Here, we propose the use of model-based clustering techniques for the automatic detection of low (LNA) and high (HNA) nucleic acid bacterioplankton groups in FCS files. To validate our method, we compared the automatic classification with a flow cytometry database from a 9 yr time series collected in the central Cantabrian Sea that had been manually analyzed. The correlation between automatic and manual gating methods was >0.9 for cell counts and 0.7 to 0.95 for side scatter values, a proxy of cell size. In addition, no significant differences were found in the mean annual cycle of LNA and HNA cell abundance depicted by both methods. We also quantified the subjectivity of manual gating. The coefficient of variation for heterotrophic bacteria counts obtained by different analysts was around 10 to 20%. Our results suggest that the combination of flow cytometry and automatic gating provides a valuable tool to analyze microbial communities objectively and accurately, allowing us to safely compare bacterioplankton samples from different environments.VersiĂłn del edito
    corecore