14 research outputs found

    Propiedades microbiológicas en un suelo de la Patagonia Argentina bajo la influencia de diferentes especies forestales

    Get PDF
    191-197In forest systems, leaf litter is usually the main source of nutrients for the vegetation and microorganisms. Leaf litter composition may vary according to the biomass and quality of the materials produced by different species. Tree roots affect the development and activity of microflora. The aim of this study was to evaluate the influence of two implanted tree species, with different composition of plant residues, on the soil characteristics. The soil is classified as an Andisol and is located in the Trevelín Forest Station, Chubut, Argentina, Lat. 43° S, Long 71°31' West. The samples were extracted from the surface soil of two forest plots with a dominant species each: Radiata Pine (Pinus radiata D. Don.) and European Oak (Quercus robur). The following analytical determinations were carried out on soil samples: organic carbon, microbial respiration, deshydrogenase activity, microbial count (bacterial communities, amilolytic, actinomyces and fungi) as well as the functional diversity of associated microbial communities. The Shannon-Weaver index (H) was calculated. The soil under Oak trees showed the highest values of microbial respiration, organic carbon and amilolytic and bacterial community counts. No significant differences were found in deshydrogenase activity, actinomyces and fungi counts between species. The principal component analysis showed significant variations in the physiology of microbial communities associated with these two tree species. The microorganism H diversity index was significantly greater for Pine. Plants residues of broadleaf species such as Oak have lower contents of recalcitrant substances than conifer species, and this fact, associated with the higher development of total and amylolytic bacteria, could result in an increase in the decomposition of plant residues in the soil and in higher organic carbon and microbial respiration values

    Multicenter Study of Method-Dependent Epidemiological Cutoff Values for Detection of Resistance in Candida spp. and Aspergillus spp. to Amphotericin B and Echinocandins for the Etest Agar Diffusion Method

    Get PDF
    BSTRACT Method-dependent Etest epidemiological cutoff values (ECVs) are not available for susceptibility testing of either Candida or Aspergillus species with amphotericin B or echinocandins. In addition, reference caspofungin MICs for Candida spp. are unreliable. Candida and Aspergillus species wild-type (WT) Etest MIC distributions (microorganisms in a species-drug combination with no detectable phenotypic resistance) were established for 4,341 Candida albicans, 113 C. dubliniensis, 1,683 C. glabrata species complex (SC), 709 C. krusei, 767 C. parapsilosis SC, 796 C. tropicalis, 1,637 Aspergillus fumigatus SC, 238 A. flavus SC, 321 A. niger SC, and 247 A. terreus SC isolates. Etest MICs from 15 laboratories (in Argentina, Europe, Mexico, South Africa, and the United States) were pooled to establish Etest ECVs. Anidulafungin, caspofungin, micafungin, and amphotericin B ECVs (in micrograms per milliliter) encompassing �97.5% of the statistically modeled population were 0.016, 0.5, 0.03, and 1 for C. albicans; 0.03, 1, 0.03, and 2 for C. glabrata SC; 0.06, 1, 0.25, and 4 for C. krusei; 8, 4, 2, and 2 forC. parapsilosis SC; and 0.03, 1, 0.12, and 2 for C. tropicalis. The amphotericin B ECV was 0.25 � g/ml for C. dubliniensis and 2, 8, 2, and 16 � g/ml for the complexes of A. fumigatus, A. flavus, A. niger, and A. terreus, respectively. While anidulafung in Etest ECVs classified 92% of the Candida fks mutants evaluated as non-WT, the performance was lower for caspofungin (75%) and micafungin (84%) cutoffs. Finally, although anidulafungin (as an echinocandin surrogate susceptibility marker) and amphotericin B ECVs should identify Candida and Aspergillus isolates with reduced susceptibility to these agents using the Etest, these ECVs will not categorize a fungal isolate as susceptible or resistant, as breakpoints do. KEYWORDS ECVs, Etest ECVs, Etest MICs Candida, Etest MICs Aspergillus, WT isolates, amphotericin B resistance, antifungal resistance, echinocandin resistance, non-WT, susceptibility marke

    Posaconazole MIC Distributions for Aspergillus fumigatus Species Complex by Four Methods: Impact of cyp51A Mutations on Estimation of Epidemiological Cutoff Values

    Get PDF
    ABSTRACT Estimating epidemiological cutoff endpoints (ECVs/ECOFFS) may be hindered by the overlap of MICs for mutant and nonmutant strains (strains harboring or not harboring mutations, respectively). Posaconazole MIC distributions for the Aspergillus fumigatus species complex were collected from 26 laboratories (in Australia, Canada, Europe, India, South and North America, and Taiwan) and published studies. Distributions that fulfilled CLSI criteria were pooled and ECVs were estimated. The sensitivity of three ECV analytical techniques (the ECOFFinder, normalized resistance interpretation [NRI], derivatization methods) to the inclusion of MICs for mutants was examined for three susceptibility testing methods (the CLSI, EUCAST, and Etest methods). The totals of posaconazole MICs for nonmutant isolates (isolates with no known cyp51A mutations) and mutant A. fumigatus isolates were as follows: by the CLSI method, 2,223 and 274, respectively; by the EUCAST method, 556 and 52, respectively; and by Etest, 1,365 and 29, respectively. MICs for 381 isolates with unknown mutational status were also evaluated with the Sensititre YeastOne system (SYO). We observed an overlap in posaconazole MICs among nonmutants and cyp51A mutants. At the commonly chosen percentage of the modeled wild-type population (97.5%), almost all ECVs remained the same when the MICs for nonmutant and mutant distributions were merged: ECOFFinder ECVs, 0.5 μg/ml for the CLSI method and 0.25 μg/ml for the EUCAST method and Etest; NRI ECVs, 0.5 μg/ml for all three methods. However, the ECOFFinder ECV for 95% of the nonmutant population by the CLSI method was 0.25 μg/ml. The tentative ECOFFinder ECV with SYO was 0.06 μg/ml (data from 3/8 laboratories). Derivatization ECVs with or without mutant inclusion were either 0.25 μg/ml (CLSI, EUCAST, Etest) or 0.06 μg/ml (SYO). It appears that ECV analytical techniques may not be vulnerable to overlap between presumptive wild-type isolates and cyp51A mutants when up to 11.6% of the estimated wild-type population includes mutants. KEYWORDS Aspergillus fumigatus, CLSI ECVs, ECVs, EUCAST ECVs, Etest, SYO, cyp51A mutants, posaconazole, triazole resistance, wild typ

    Multicenter Study of Epidemiological Cutoff Values and Detection of Resistance in Candida spp. to Anidulafungin, Caspofungin, and Micafungin Using the Sensititre YeastOne Colorimetric Method

    No full text
    Neither breakpoints (BPs) nor epidemiological cutoff values (ECVs) have been established for Candida spp. with anidulafungin, caspofungin, and micafungin when using the Sensititre YeastOne (SYO) broth dilution colorimetric method. In addition, reference caspofungin MICs have so far proven to be unreliable. Candida species wild-type (WT) MIC distributions (for microorganisms in a species/drug combination with no detectable phenotypic resistance) were established for 6,007 Candida albicans, 186 C. dubliniensis, 3,188 C. glabrata complex, 119 C. guilliermondii, 493 C. krusei, 205 C. lusitaniae, 3,136 C. parapsilosis complex, and 1,016 C. tropicalis isolates. SYO MIC data gathered from 38 laboratories in Australia, Canada, Europe, Mexico, New Zealand, South Africa, and the United States were pooled to statistically define SYO ECVs. ECVs for anidulafungin, caspofungin, and micafungin encompassing >97.5% of the statistically modeled population were, respectively, 0.12,0.25, and 0.06 μg/ml for C. albicans, 0.12, 0.25, and 0.03 μg/ml for C. glabrata complex, 4, 2, and 4 μg/ml for C. parapsilosis complex, 0.5,0.25, and 0.06 μg/ml for C. tropicalis, 0.25,1, and 0.25 μg/ml for C. krusei, 0.25,1, and 0.12 μg/ml for C. lusitaniae, 4,2, and 2 μg/ml for C. guilliermondii, and 0.25,0.25, and 0.12 μg/ml for C. dubliniensis. Species-specific SYO ECVs for anidulafungin, caspofungin, and micafungin correctly classified 72 (88.9%), 74 (91.4%), 76 (93.8%), respectively, of 81 Candida isolates with identified fks mutations. SYO ECVs may aid in detecting non-WT isolates with reduced susceptibility to anidulafungin, micafungin, and especially caspofungin, since testing the susceptibilities of Candida spp. to caspofungin by reference methodologies is not recommended. Copyright © 2015, American Society for Microbiology. All Rights Reserved
    corecore